File size: 15,572 Bytes
efe9b1b 26841b5 6a16de4 efe9b1b f7c6a9c 6a16de4 f7c6a9c 26841b5 9f4df99 efe9b1b f7c6a9c efe9b1b f7c6a9c 26841b5 9f4df99 efe9b1b 6a16de4 f7c6a9c 04ca462 f7c6a9c efe9b1b f7c6a9c 04ca462 f7c6a9c efe9b1b f7c6a9c 04ca462 f7c6a9c 04ca462 f7c6a9c efe9b1b 6a16de4 efe9b1b 6a16de4 efe9b1b f7c6a9c efe9b1b f7c6a9c 6a16de4 f7c6a9c 6a16de4 f7c6a9c 6a16de4 f7c6a9c 04ca462 f7c6a9c 6a16de4 04ca462 f7c6a9c 04ca462 f7c6a9c 04ca462 f7c6a9c 04ca462 f7c6a9c 6a16de4 f7c6a9c 6a16de4 f7c6a9c 04ca462 f7c6a9c 04ca462 f7c6a9c 04ca462 6a16de4 f7c6a9c 6a16de4 f7c6a9c 6a16de4 04ca462 04848bf f7c6a9c 04ca462 efe9b1b f7c6a9c 6a16de4 f7c6a9c 04ca462 f7c6a9c 6a16de4 efe9b1b 26841b5 990992c 9f4df99 efe9b1b 990992c 26841b5 efe9b1b 990992c efe9b1b 26841b5 990992c efe9b1b 26841b5 efe9b1b 990992c efe9b1b 990992c 9f4df99 efe9b1b f7c6a9c 6a16de4 f7c6a9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 |
#!/usr/bin/env python3
"""
cv_processing.py Β· slim orchestrator layer (self-contained, backward-compatible)
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
Public API (unchanged):
- segment_person_hq(frame, predictor=None, fallback_enabled=True, **compat)
- segment_person_hq_original(...)
- refine_mask_hq(frame, mask, matanyone=None, fallback_enabled=True, **compat)
- replace_background_hq(frame, mask, background, fallback_enabled=True)
- create_professional_background(key_or_cfg, width, height)
- validate_video_file(video_path) -> (bool, reason)
"""
from __future__ import annotations
import logging
from pathlib import Path
from typing import Any, Dict, Optional, Tuple
import cv2
import numpy as np
logger = logging.getLogger(__name__)
# ----------------------------------------------------------------------------
# Background presets (local copy; safe defaults)
# ----------------------------------------------------------------------------
PROFESSIONAL_BACKGROUNDS_LOCAL: Dict[str, Dict[str, Any]] = {
"office": {"color": (240, 248, 255), "gradient": True},
"studio": {"color": (32, 32, 32), "gradient": False},
"nature": {"color": (34, 139, 34), "gradient": True},
"abstract": {"color": (75, 0, 130), "gradient": True},
"white": {"color": (255, 255, 255), "gradient": False},
"black": {"color": (0, 0, 0), "gradient": False},
}
PROFESSIONAL_BACKGROUNDS = PROFESSIONAL_BACKGROUNDS_LOCAL # alias for callers
# ----------------------------------------------------------------------------
# Helpers
# ----------------------------------------------------------------------------
def _ensure_rgb(img: np.ndarray) -> np.ndarray:
if img is None:
return img
if img.ndim == 3 and img.shape[2] == 3:
# Assume OpenCV BGR β convert to RGB
return cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
return img
def _to_mask01(m: np.ndarray) -> np.ndarray:
if m is None:
return None
if m.ndim == 3 and m.shape[2] in (1, 3):
m = m[..., 0]
m = m.astype(np.float32)
if m.max() > 1.0:
m = m / 255.0
return np.clip(m, 0.0, 1.0)
def _feather(mask01: np.ndarray, k: int = 2) -> np.ndarray:
if mask01.ndim == 3:
mask01 = mask01[..., 0]
k = max(1, int(k) * 2 + 1)
m = cv2.GaussianBlur((mask01 * 255.0).astype(np.uint8), (k, k), 0)
return (m.astype(np.float32) / 255.0)
def _vertical_gradient(top: Tuple[int,int,int], bottom: Tuple[int,int,int], width: int, height: int) -> np.ndarray:
bg = np.zeros((height, width, 3), dtype=np.uint8)
for y in range(height):
t = y / max(1, height - 1)
r = int(top[0] * (1 - t) + bottom[0] * t)
g = int(top[1] * (1 - t) + bottom[1] * t)
b = int(top[2] * (1 - t) + bottom[2] * t)
bg[y, :] = (r, g, b)
return bg
def _looks_like_mask(x: Any) -> bool:
return (
isinstance(x, np.ndarray)
and x.ndim in (2, 3)
and (x.ndim == 2 or (x.ndim == 3 and x.shape[2] in (1, 3)))
and x.dtype != object
)
# ----------------------------------------------------------------------------
# Background creation (RGB)
# ----------------------------------------------------------------------------
def create_professional_background(key_or_cfg: Any, width: int, height: int) -> np.ndarray:
if isinstance(key_or_cfg, str):
cfg = PROFESSIONAL_BACKGROUNDS_LOCAL.get(key_or_cfg, PROFESSIONAL_BACKGROUNDS_LOCAL["office"])
elif isinstance(key_or_cfg, dict):
cfg = key_or_cfg
else:
cfg = PROFESSIONAL_BACKGROUNDS_LOCAL["office"]
color = tuple(int(x) for x in cfg.get("color", (255, 255, 255)))
use_grad = bool(cfg.get("gradient", False))
if not use_grad:
return np.full((height, width, 3), color, dtype=np.uint8)
dark = (int(color[0]*0.7), int(color[1]*0.7), int(color[2]*0.7))
return _vertical_gradient(dark, color, width, height)
# ----------------------------------------------------------------------------
# Segmentation
# ----------------------------------------------------------------------------
def _simple_person_segmentation(frame_bgr: np.ndarray) -> np.ndarray:
hsv = cv2.cvtColor(frame_bgr, cv2.COLOR_BGR2HSV)
lower_green = np.array([40, 40, 40], dtype=np.uint8)
upper_green = np.array([80, 255, 255], dtype=np.uint8)
green_mask = cv2.inRange(hsv, lower_green, upper_green)
lower_white = np.array([0, 0, 200], dtype=np.uint8)
upper_white = np.array([180, 30, 255], dtype=np.uint8)
white_mask = cv2.inRange(hsv, lower_white, upper_white)
bg_mask = cv2.bitwise_or(green_mask, white_mask)
person_mask = cv2.bitwise_not(bg_mask)
kernel = np.ones((5, 5), np.uint8)
person_mask = cv2.morphologyEx(person_mask, cv2.MORPH_CLOSE, kernel)
person_mask = cv2.morphologyEx(person_mask, cv2.MORPH_OPEN, kernel)
return (person_mask.astype(np.float32) / 255.0)
def segment_person_hq(
frame: np.ndarray,
predictor: Optional[Any] = None,
fallback_enabled: bool = True,
# backward-compat shim:
use_sam2: Optional[bool] = None,
**_compat_kwargs,
) -> np.ndarray:
try:
if use_sam2 is False:
return _simple_person_segmentation(frame)
if predictor is not None and hasattr(predictor, "set_image") and hasattr(predictor, "predict"):
rgb = _ensure_rgb(frame)
predictor.set_image(rgb)
h, w = rgb.shape[:2]
center = np.array([[w // 2, h // 2]])
labels = np.array([1])
masks, scores, _ = predictor.predict(
point_coords=center,
point_labels=labels,
multimask_output=True
)
m = np.array(masks)
if m.ndim == 3:
idx = int(np.argmax(scores)) if scores is not None else 0
m = m[idx]
elif m.ndim != 2:
raise RuntimeError(f"Unexpected SAM2 mask shape: {m.shape}")
return _to_mask01(m)
except Exception as e:
logger.warning("SAM2 segmentation failed: %s", e)
return _simple_person_segmentation(frame) if fallback_enabled else np.ones(frame.shape[:2], dtype=np.float32)
segment_person_hq_original = segment_person_hq # back-compat alias
# ----------------------------------------------------------------------------
# MatAnyOne helpers
# ----------------------------------------------------------------------------
def _to_tensor_chw(img_uint8_bgr: np.ndarray) -> "torch.Tensor":
import torch
rgb = cv2.cvtColor(img_uint8_bgr, cv2.COLOR_BGR2RGB)
return torch.from_numpy(rgb).permute(2, 0, 1).contiguous().float() / 255.0 # (3,H,W)
def _mask_to_tensor01(mask01: np.ndarray) -> "torch.Tensor":
import torch
return torch.from_numpy(mask01.astype(np.float32)).unsqueeze(0).unsqueeze(0) # (1,1,H,W)
def _tensor_to_mask01(t: "torch.Tensor") -> np.ndarray:
import torch
if t.ndim == 4:
t = t[0, 0]
elif t.ndim == 3:
t = t[0]
return np.clip(t.detach().float().cpu().numpy(), 0.0, 1.0)
def _remap_harden(mask01: np.ndarray, inside: float = 0.70, outside: float = 0.35) -> np.ndarray:
"""
Pull the mask toward {0,1} to avoid 'ghost' translucency.
Values <= outside -> 0; >= inside -> 1; linear in between.
"""
m = mask01.astype(np.float32)
if inside <= outside:
return m
m = (m - outside) / max(1e-6, (inside - outside))
return np.clip(m, 0.0, 1.0)
def _pad_and_smooth_edges(mask01: np.ndarray, dilate_px: int = 6, edge_blur_px: int = 2) -> np.ndarray:
m = (mask01 * 255.0).astype(np.uint8)
if dilate_px > 0:
k = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (dilate_px, dilate_px))
m = cv2.dilate(m, k, iterations=1)
if edge_blur_px > 0:
ksize = edge_blur_px * 2 + 1
m = cv2.GaussianBlur(m, (ksize, ksize), 0)
return (m.astype(np.float32) / 255.0)
def _try_matanyone_refine(
matanyone: Any,
frame_bgr: np.ndarray,
mask01: np.ndarray
) -> Optional[np.ndarray]:
"""
Try several MatAnyOne interfaces:
1) InferenceCore.infer(PIL_image, PIL_mask)
2) .step(image_tensor=NCHW, mask_tensor=NCHW)
3) .process(image_np, mask_np)
4) callable(image_tensor, mask_tensor) β tensor
Returns refined mask01 (np.ndarray) or None if not usable.
"""
try:
# --- (1) PIL infer path ------------------------------------------------
if hasattr(matanyone, "infer"):
try:
from PIL import Image
img_pil = Image.fromarray(cv2.cvtColor(frame_bgr, cv2.COLOR_BGR2RGB))
m_pil = Image.fromarray((mask01 * 255.0).astype(np.uint8))
out_pil = matanyone.infer(img_pil, m_pil)
out_np = np.asarray(out_pil).astype(np.float32)
return _to_mask01(out_np)
except Exception as e:
logger.debug("MatAnyOne.infer path failed: %s", e)
# --- (2) tensor .step path --------------------------------------------
if hasattr(matanyone, "step"):
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
img_t = _to_tensor_chw(frame_bgr).unsqueeze(0).to(device) # (1,3,H,W)
mask_t = _mask_to_tensor01(mask01).to(device) # (1,1,H,W)
with torch.inference_mode():
out = matanyone.step(
image_tensor=img_t,
mask_tensor=mask_t,
objects=None,
first_frame_pred=True
)
if hasattr(matanyone, "output_prob_to_mask"):
out = matanyone.output_prob_to_mask(out)
return _tensor_to_mask01(out)
# --- (3) numpy .process path ------------------------------------------
if hasattr(matanyone, "process"):
out = matanyone.process(frame_bgr, mask01)
return _to_mask01(np.asarray(out))
# --- (4) callable / nn.Module path ------------------------------------
if callable(matanyone):
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
img_t = _to_tensor_chw(frame_bgr).unsqueeze(0).to(device)
mask_t = _mask_to_tensor01(mask01).to(device)
with torch.inference_mode():
out = matanyone(img_t, mask_t)
return _tensor_to_mask01(out)
except Exception as e:
logger.warning("MatAnyOne refine error: %s", e)
return None
# ----------------------------------------------------------------------------
# Refinement (MatAnyOne)
# ----------------------------------------------------------------------------
def refine_mask_hq(
frame: np.ndarray,
mask: np.ndarray,
matanyone: Optional[Any] = None,
fallback_enabled: bool = True,
# backward-compat shims:
use_matanyone: Optional[bool] = None,
**_compat_kwargs,
) -> np.ndarray:
"""
Refine single-channel mask with MatAnyOne if available.
Backward-compat:
- accepts use_matanyone (False β skip model)
- tolerates legacy arg order refine_mask_hq(mask, frame, ...)
"""
# tolerate legacy order: refine_mask_hq(mask, frame, ...)
if _looks_like_mask(frame) and _looks_like_mask(mask) and mask.ndim == 3 and mask.shape[2] == 3:
frame, mask = mask, frame # swap
mask01 = _to_mask01(mask)
# Use MatAnyOne when possible
if use_matanyone is not False and matanyone is not None:
refined = _try_matanyone_refine(matanyone, frame, mask01)
if refined is not None:
# Hardening + edge handling to avoid translucent body/halo
refined = _remap_harden(refined, inside=0.70, outside=0.35)
refined = _pad_and_smooth_edges(refined, dilate_px=4, edge_blur_px=1)
return refined
else:
logger.warning("MatAnyOne provided but no usable interface found; falling back.")
# Simple refinement fallback
m = (mask01 * 255.0).astype(np.uint8)
m = cv2.GaussianBlur(m, (5, 5), 0)
m = cv2.bilateralFilter(m, 9, 75, 75)
m = (m.astype(np.float32) / 255.0)
m = _remap_harden(m, inside=0.68, outside=0.40)
m = _pad_and_smooth_edges(m, dilate_px=3, edge_blur_px=1)
return m if fallback_enabled else mask01
# ----------------------------------------------------------------------------
# Compositing
# ----------------------------------------------------------------------------
def replace_background_hq(
frame: np.ndarray,
mask01: np.ndarray,
background: np.ndarray,
fallback_enabled: bool = True,
**_compat,
) -> np.ndarray:
try:
H, W = frame.shape[:2]
if background.shape[:2] != (H, W):
background = cv2.resize(background, (W, H), interpolation=cv2.INTER_LANCZOS4)
m = _to_mask01(mask01)
# Very light feather to hide stair-steps; most shaping already done
m = _feather(m, k=1)
m3 = np.repeat(m[:, :, None], 3, axis=2)
comp = frame.astype(np.float32) * m3 + background.astype(np.float32) * (1.0 - m3)
return np.clip(comp, 0, 255).astype(np.uint8)
except Exception as e:
if fallback_enabled:
logger.warning("Compositing failed (%s) β returning original frame", e)
return frame
raise
# ----------------------------------------------------------------------------
# Video validation
# ----------------------------------------------------------------------------
def validate_video_file(video_path: str) -> Tuple[bool, str]:
if not video_path or not Path(video_path).exists():
return False, "Video file not found"
try:
size = Path(video_path).stat().st_size
if size == 0:
return False, "File is empty"
if size > 2 * 1024 * 1024 * 1024:
return False, "File > 2 GB β too large for the Space quota"
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
return False, "OpenCV cannot read the file"
n_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = cap.get(cv2.CAP_PROP_FPS)
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
cap.release()
if n_frames == 0:
return False, "No frames detected"
if fps <= 0 or fps > 120:
return False, f"Suspicious FPS: {fps}"
if w <= 0 or h <= 0:
return False, "Zero resolution"
if w > 4096 or h > 4096:
return False, f"Resolution {w}Γ{h} too high (max 4 096Β²)"
if (n_frames / fps) > 300:
return False, "Video longer than 5 minutes"
return True, f"OK β {w}Γ{h}, {fps:.1f} fps, {n_frames/fps:.1f} s"
except Exception as e:
logger.error(f"validate_video_file: {e}")
return False, f"Validation error: {e}"
# ----------------------------------------------------------------------------
# Public symbols
# ----------------------------------------------------------------------------
__all__ = [
"segment_person_hq",
"segment_person_hq_original",
"refine_mask_hq",
"replace_background_hq",
"create_professional_background",
"validate_video_file",
"PROFESSIONAL_BACKGROUNDS",
]
|