Spaces:
Running
Running
File size: 77,987 Bytes
da7e8af d77de54 da7e8af e8b46b5 d77de54 8bbc7e5 d77de54 8bbc7e5 c38c9d4 8bbc7e5 d77de54 8bbc7e5 e8b46b5 da7e8af e8b46b5 c38c9d4 e8b46b5 da7e8af 8bbc7e5 da7e8af e8b46b5 d77de54 e8b46b5 c38c9d4 d77de54 e8b46b5 b93e8d9 8bbc7e5 d77de54 8bbc7e5 d77de54 8bbc7e5 d77de54 8bbc7e5 b93e8d9 d77de54 b93e8d9 e8b46b5 d77de54 da7e8af d77de54 e8b46b5 5b2b3a8 d77de54 da7e8af d77de54 e8b46b5 d77de54 da7e8af d77de54 c38c9d4 d77de54 c38c9d4 d77de54 da7e8af d77de54 c38c9d4 d77de54 da7e8af d77de54 c38c9d4 d77de54 da7e8af d77de54 e8b46b5 5b2b3a8 da7e8af 5b2b3a8 d77de54 da7e8af e8b46b5 5b2b3a8 da7e8af d77de54 5b2b3a8 da7e8af d77de54 da7e8af d77de54 5b2b3a8 d77de54 da7e8af e8b46b5 b93e8d9 d77de54 b93e8d9 c38c9d4 d77de54 c38c9d4 d77de54 c38c9d4 5b2b3a8 d77de54 c38c9d4 da7e8af c38c9d4 da7e8af c38c9d4 5b2b3a8 c38c9d4 b93e8d9 c38c9d4 b93e8d9 5efc8a5 b93e8d9 d77de54 b93e8d9 c38c9d4 d77de54 c38c9d4 da7e8af d77de54 8bbc7e5 d77de54 8bbc7e5 c38c9d4 8bbc7e5 d77de54 c38c9d4 8bbc7e5 d77de54 8bbc7e5 d77de54 8bbc7e5 d77de54 8bbc7e5 d77de54 da7e8af c38c9d4 da7e8af d77de54 c38c9d4 8bbc7e5 d77de54 c38c9d4 da7e8af c38c9d4 da7e8af c38c9d4 da7e8af d77de54 8bbc7e5 d77de54 8bbc7e5 d77de54 c38c9d4 8bbc7e5 d77de54 c38c9d4 da7e8af 8bbc7e5 c38c9d4 8bbc7e5 da7e8af 8bbc7e5 d77de54 8bbc7e5 d77de54 8bbc7e5 c38c9d4 8bbc7e5 da7e8af d77de54 8bbc7e5 c38c9d4 d77de54 8bbc7e5 d77de54 8bbc7e5 da7e8af c38c9d4 da7e8af d77de54 c38c9d4 da7e8af c38c9d4 da7e8af d77de54 c38c9d4 d77de54 da7e8af c38c9d4 d77de54 c38c9d4 d77de54 da7e8af c38c9d4 076f0d9 d77de54 8df4ecc d77de54 076f0d9 8bbc7e5 076f0d9 da7e8af 076f0d9 22b9cc9 76ff551 076f0d9 76ff551 076f0d9 22b9cc9 d77de54 76ff551 076f0d9 da7e8af d77de54 76ff551 22b9cc9 d77de54 76ff551 da7e8af 76ff551 2c767ad da7e8af 54d9a7f 428b626 2c767ad 428b626 a5282db 428b626 b93e8d9 2c767ad b93e8d9 2c767ad 8df4ecc 3894cf3 c60ddb7 3894cf3 b93e8d9 c60ddb7 3894cf3 8bbc7e5 3894cf3 c60ddb7 8bbc7e5 d77de54 8bbc7e5 c60ddb7 8bbc7e5 c60ddb7 8bbc7e5 c60ddb7 3894cf3 c60ddb7 8bbc7e5 c60ddb7 8bbc7e5 c60ddb7 8bbc7e5 c60ddb7 8bbc7e5 c60ddb7 8bbc7e5 c60ddb7 8bbc7e5 c60ddb7 8bbc7e5 c60ddb7 8bbc7e5 c60ddb7 8bbc7e5 c60ddb7 b93e8d9 3894cf3 c60ddb7 d77de54 3894cf3 47ac43f 48fb6ed 47ac43f 3894cf3 c0e794c 47ac43f 3894cf3 47ac43f 3894cf3 47ac43f 3894cf3 da7e8af 61e7c5d 47ac43f 61e7c5d 47ac43f 61e7c5d 48fb6ed 47ac43f 48fb6ed 61e7c5d 47ac43f 48fb6ed 61e7c5d 47ac43f 61e7c5d 47ac43f 61e7c5d 47ac43f 61e7c5d 47ac43f 48fb6ed 47ac43f 61e7c5d 47ac43f 61e7c5d 1f4d3cf 47ac43f 1f4d3cf 48fb6ed 47ac43f 61e7c5d 47ac43f 3894cf3 47ac43f 3894cf3 47ac43f 3894cf3 47ac43f 61e7c5d 47ac43f 48fb6ed 47ac43f 48fb6ed 47ac43f 48fb6ed 47ac43f 48fb6ed 47ac43f 48fb6ed 47ac43f 48fb6ed 47ac43f 48fb6ed 47ac43f 61e7c5d 47ac43f 61e7c5d 47ac43f 61e7c5d 47ac43f 61e7c5d 47ac43f 61e7c5d 47ac43f da7e8af 47ac43f da7e8af c0e794c d77de54 c0e794c d77de54 c0e794c d77de54 c0e794c d77de54 4e326f4 d77de54 c0e794c da7e8af 450ea05 c0e794c da7e8af d77de54 c0e794c d77de54 c0e794c d77de54 c0e794c d77de54 c0e794c 3894cf3 da7e8af d77de54 da7e8af e8b46b5 c38c9d4 364a368 da7e8af 364a368 3894cf3 da7e8af ae4477c d4200b4 da7e8af d4200b4 da7e8af 364a368 da7e8af d77de54 8bbc7e5 c38c9d4 da7e8af d77de54 8df4ecc 076f0d9 8df4ecc da7e8af d77de54 c38c9d4 da7e8af c38c9d4 da7e8af d77de54 e8b46b5 7755a4a e8b46b5 d77de54 da7e8af e8b46b5 da7e8af d77de54 e8b46b5 da7e8af d77de54 c38c9d4 c0e794c c38c9d4 e8b46b5 c38c9d4 d77de54 e8b46b5 c0e794c da7e8af d77de54 c38c9d4 da7e8af d77de54 c38c9d4 da7e8af e8b46b5 d77de54 c38c9d4 d77de54 c38c9d4 da7e8af d77de54 e8b46b5 c38c9d4 c0e794c 8df4ecc da7e8af d77de54 c0e794c da7e8af d77de54 c0e794c da7e8af c0e794c e8b46b5 c38c9d4 da7e8af d77de54 da7e8af c38c9d4 d77de54 c38c9d4 d77de54 da7e8af 7755a4a ddb37e5 c38c9d4 c60ddb7 c38c9d4 c60ddb7 c38c9d4 c60ddb7 c38c9d4 c60ddb7 c38c9d4 c60ddb7 c38c9d4 c60ddb7 c38c9d4 c60ddb7 c0e794c c38c9d4 c60ddb7 c38c9d4 c60ddb7 c38c9d4 c60ddb7 c38c9d4 c60ddb7 c38c9d4 c60ddb7 c38c9d4 c0e794c c60ddb7 da7e8af c38c9d4 c60ddb7 c38c9d4 c60ddb7 c38c9d4 c60ddb7 c38c9d4 d77de54 da7e8af c38c9d4 d77de54 c38c9d4 d77de54 c38c9d4 da7e8af c38c9d4 d77de54 c38c9d4 d77de54 c38c9d4 da7e8af c38c9d4 da7e8af 7755a4a 560885b 8bbc7e5 d77de54 8bbc7e5 5b2b3a8 e8b46b5 5b2b3a8 da7e8af c38c9d4 e8b46b5 5b2b3a8 e8b46b5 5b2b3a8 e8b46b5 5b2b3a8 e8b46b5 c0e794c e8b46b5 c38c9d4 9ba883a da7e8af 8bbc7e5 e8b46b5 5b2b3a8 da7e8af 5b2b3a8 7755a4a c38c9d4 412e2ed e8b46b5 a6e31ac c38c9d4 a6e31ac 7755a4a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 |
#!/usr/bin/env python3
"""
pipeline.py β safer matching and operator-declaration protections
Key improvements:
- find_matching_json_key_and_value() returns (key, value) so callers can accept/reject by key.
- Higher fuzzy thresholds for risky substitutions.
- Operator Declaration: avoid using attendance lists / unrelated keys for Position Title.
- Vehicle header mapping: stronger normalized substring/ token matching for long headers.
- Preserves existing logging and all previous handlers/logic.
"""
import json
from docx import Document
from docx.shared import RGBColor
import re
from typing import Any, Tuple, Optional
# ============================================================================
# Heading patterns for document structure detection (unchanged)
# ============================================================================
HEADING_PATTERNS = {
"main": [
r"NHVAS\s+Audit\s+Summary\s+Report",
r"NATIONAL\s+HEAVY\s+VEHICLE\s+ACCREDITATION\s+AUDIT\s+SUMMARY\s+REPORT",
r"NHVAS\s+AUDIT\s+SUMMARY\s+REPORT"
],
"sub": [
r"AUDIT\s+OBSERVATIONS\s+AND\s+COMMENTS",
r"MAINTENANCE\s+MANAGEMENT",
r"MASS\s+MANAGEMENT",
r"FATIGUE\s+MANAGEMENT",
r"Fatigue\s+Management\s+Summary\s+of\s+Audit\s+findings",
r"MAINTENANCE\s+MANAGEMENT\s+SUMMARY\s+OF\s+AUDIT\s+FINDINGS",
r"MASS\s+MANAGEMENT\s+SUMMARY\s+OF\s+AUDIT\s+FINDINGS",
r"Vehicle\s+Registration\s+Numbers\s+of\s+Records\s+Examined",
r"CORRECTIVE\s+ACTION\s+REQUEST\s+\(CAR\)",
r"NHVAS\s+APPROVED\s+AUDITOR\s+DECLARATION",
r"Operator\s+Declaration",
r"Operator\s+Information",
r"Driver\s*/\s*Scheduler\s+Records\s+Examined"
]
}
# ============================================================================
# Utility helpers
# ============================================================================
_unmatched_headers = {}
def record_unmatched_header(header: str):
if not header:
return
_unmatched_headers[header] = _unmatched_headers.get(header, 0) + 1
def load_json(filepath):
with open(filepath, 'r', encoding='utf-8') as file:
return json.load(file)
def flatten_json(y, prefix=''):
out = {}
for key, val in y.items():
new_key = f"{prefix}.{key}" if prefix else key
if isinstance(val, dict):
out.update(flatten_json(val, new_key))
else:
out[new_key] = val
out[key] = val
return out
def is_red(run):
color = run.font.color
try:
return color and ((getattr(color, "rgb", None) and color.rgb == RGBColor(255, 0, 0)) or getattr(color, "theme_color", None) == 1)
except Exception:
return False
def get_value_as_string(value, field_name=""):
if isinstance(value, list):
if len(value) == 0:
return ""
elif len(value) == 1:
return str(value[0])
else:
# Keep lists intact for special patterns (e.g., ACN digits) but default to join
if "australian company number" in field_name.lower() or "company number" in field_name.lower():
return value
return " ".join(str(v) for v in value)
else:
return str(value)
def get_clean_text(cell):
text = ""
for paragraph in cell.paragraphs:
for run in paragraph.runs:
text += run.text
return text.strip()
def has_red_text(cell):
for paragraph in cell.paragraphs:
for run in paragraph.runs:
if is_red(run) and run.text.strip():
return True
return False
def has_red_text_in_paragraph(paragraph):
for run in paragraph.runs:
if is_red(run) and run.text.strip():
return True
return False
def normalize_header_text(s: str) -> str:
if not s:
return ""
s = re.sub(r'\([^)]*\)', ' ', s) # remove parenthetical content
s = s.replace("/", " ")
s = re.sub(r'[^\w\s\#\%]', ' ', s)
s = re.sub(r'\s+', ' ', s).strip().lower()
# canonical tweaks
s = s.replace('registrationno', 'registration number')
s = s.replace('registrationnumber', 'registration number')
s = s.replace('sub-contractor', 'sub contractor')
s = s.replace('sub contracted', 'sub contractor')
return s.strip()
# ============================================================================
# JSON matching functions
# - find_matching_json_value: (keeps behavior used elsewhere)
# - find_matching_json_key_and_value: returns (key, value) so callers can
# decide whether to use an entry based on the matched key.
# ============================================================================
def find_matching_json_value(field_name, flat_json):
"""Legacy API: return value only (preserves existing callers)."""
result = find_matching_json_key_and_value(field_name, flat_json)
return result[1] if result else None
def find_matching_json_key_and_value(field_name, flat_json) -> Optional[Tuple[str, Any]]:
"""
Return (matched_key, matched_value) or None.
Safer thresholds: fuzzy matches require >=0.35 by default.
"""
field_name = (field_name or "").strip()
if not field_name:
return None
# Exact match
if field_name in flat_json:
print(f" β
Direct match found for key '{field_name}'")
return field_name, flat_json[field_name]
# Case-insensitive exact
for key, value in flat_json.items():
if key.lower() == field_name.lower():
print(f" β
Case-insensitive match found for key '{field_name}' -> '{key}'")
return key, value
# Special-case 'print name' preference for operator vs auditor (prefer fully-qualified)
if field_name.lower().strip() == "print name":
operator_keys = [k for k in flat_json.keys() if "operator" in k.lower() and "print name" in k.lower()]
auditor_keys = [k for k in flat_json.keys() if "auditor" in k.lower() and ("print name" in k.lower() or "name" in k.lower())]
if operator_keys:
print(f" β
Operator Print Name match: '{field_name}' -> '{operator_keys[0]}'")
return operator_keys[0], flat_json[operator_keys[0]]
elif auditor_keys:
print(f" β
Auditor Name match: '{field_name}' -> '{auditor_keys[0]}'")
return auditor_keys[0], flat_json[auditor_keys[0]]
# Suffix match for nested keys (e.g., 'section.field')
for key, value in flat_json.items():
if '.' in key and key.split('.')[-1].lower() == field_name.lower():
print(f" β
Suffix match found for key '{field_name}' -> '{key}'")
return key, value
# Clean and exact
clean_field = re.sub(r'[^\w\s]', ' ', field_name.lower()).strip()
clean_field = re.sub(r'\s+', ' ', clean_field)
for key, value in flat_json.items():
clean_key = re.sub(r'[^\w\s]', ' ', key.lower()).strip()
clean_key = re.sub(r'\s+', ' ', clean_key)
if clean_field == clean_key:
print(f" β
Clean match found for key '{field_name}' -> '{key}'")
return key, value
# Fuzzy matching with token scoring
field_words = set(word.lower() for word in re.findall(r'\b\w+\b', field_name) if len(word) > 2)
if not field_words:
return None
best_key = None
best_value = None
best_score = 0.0
for key, value in flat_json.items():
key_words = set(word.lower() for word in re.findall(r'\b\w+\b', key) if len(word) > 2)
if not key_words:
continue
common = field_words.intersection(key_words)
if not common:
# allow substring in normalized forms as a weaker fallback
norm_field = normalize_header_text(field_name)
norm_key = normalize_header_text(key)
if norm_field and norm_key and (norm_field in norm_key or norm_key in norm_field):
# substring score based on length ratio
substring_score = min(len(norm_field), len(norm_key)) / max(len(norm_field), len(norm_key))
final_score = 0.4 * substring_score
else:
final_score = 0.0
else:
similarity = len(common) / len(field_words.union(key_words))
coverage = len(common) / len(field_words)
final_score = (similarity * 0.6) + (coverage * 0.4)
if final_score > best_score:
best_score = final_score
best_key = key
best_value = value
# Accept only reasonable fuzzy matches (threshold 0.35)
if best_key and best_score >= 0.35:
print(f" β
Fuzzy match found for key '{field_name}' with JSON key '{best_key}' (score: {best_score:.2f})")
return best_key, best_value
print(f" β No match found for '{field_name}'")
return None
# ============================================================================
# Red text helpers (unchanged except kept robust)
# ============================================================================
def extract_red_text_segments(cell):
red_segments = []
for para_idx, paragraph in enumerate(cell.paragraphs):
current_segment = ""
segment_runs = []
for run_idx, run in enumerate(paragraph.runs):
if is_red(run):
if run.text:
current_segment += run.text
segment_runs.append((para_idx, run_idx, run))
else:
if segment_runs:
red_segments.append({'text': current_segment, 'runs': segment_runs.copy(), 'paragraph_idx': para_idx})
current_segment = ""
segment_runs = []
if segment_runs:
red_segments.append({'text': current_segment, 'runs': segment_runs.copy(), 'paragraph_idx': para_idx})
return red_segments
def replace_all_red_segments(red_segments, replacement_text):
if not red_segments:
return 0
if '\n' in replacement_text:
replacement_lines = replacement_text.split('\n')
else:
replacement_lines = [replacement_text]
replacements_made = 0
first_segment = red_segments[0]
if first_segment['runs']:
first_run = first_segment['runs'][0][2]
first_run.text = replacement_lines[0]
first_run.font.color.rgb = RGBColor(0, 0, 0)
replacements_made = 1
for _, _, run in first_segment['runs'][1:]:
run.text = ''
for segment in red_segments[1:]:
for _, _, run in segment['runs']:
run.text = ''
if len(replacement_lines) > 1 and red_segments:
try:
first_run = red_segments[0]['runs'][0][2]
paragraph = first_run.element.getparent()
from docx.oxml import OxmlElement
for line in replacement_lines[1:]:
if line.strip():
br = OxmlElement('w:br')
first_run.element.append(br)
new_run = paragraph.add_run(line.strip())
new_run.font.color.rgb = RGBColor(0, 0, 0)
except Exception:
if red_segments and red_segments[0]['runs']:
first_run = red_segments[0]['runs'][0][2]
first_run.text = ' '.join(replacement_lines)
first_run.font.color.rgb = RGBColor(0, 0, 0)
return replacements_made
def replace_single_segment(segment, replacement_text):
if not segment['runs']:
return False
first_run = segment['runs'][0][2]
first_run.text = replacement_text
first_run.font.color.rgb = RGBColor(0, 0, 0)
for _, _, run in segment['runs'][1:]:
run.text = ''
return True
def replace_red_text_in_cell(cell, replacement_text):
red_segments = extract_red_text_segments(cell)
if not red_segments:
return 0
return replace_all_red_segments(red_segments, replacement_text)
# ============================================================================
# Specialized handlers (vehicle, attendance, management, operator) with fixes
# ============================================================================
def handle_australian_company_number(row, company_numbers):
replacements_made = 0
for i, digit in enumerate(company_numbers):
cell_idx = i + 1
if cell_idx < len(row.cells):
cell = row.cells[cell_idx]
if has_red_text(cell):
cell_replacements = replace_red_text_in_cell(cell, str(digit))
replacements_made += cell_replacements
print(f" -> Placed digit '{digit}' in cell {cell_idx + 1}")
return replacements_made
def handle_vehicle_registration_table(table, flat_json):
"""
Stronger header normalization + substring matching for long headers.
Keeps existing behavior but reduces 'No mapping found' by using normalized substring matching.
"""
replacements_made = 0
# Build candidate vehicle_section similar to prior logic
vehicle_section = None
# Prefer keys explicitly mentioning 'registration' or 'vehicle'
candidates = [(k, v) for k, v in flat_json.items() if 'registration' in k.lower() or 'vehicle' in k.lower()]
if candidates:
# prefer the one with longest key match (likely most specific)
candidates.sort(key=lambda kv: -len(kv[0]))
vehicle_section = candidates[0][1]
# fallback: collect flattened keys that look like vehicle columns
if vehicle_section is None:
potential_columns = {}
for key, value in flat_json.items():
lk = key.lower()
if any(col_name in lk for col_name in ["registration number", "sub-contractor", "weight verification", "rfs suspension", "trip records", "fault recording", "fault repair", "daily checks", "roadworthiness"]):
if "." in key:
column_name = key.split(".")[-1]
else:
column_name = key
potential_columns[column_name] = value
if potential_columns:
vehicle_section = potential_columns
print(f" β
Found vehicle data from flattened keys: {list(vehicle_section.keys())}")
if not vehicle_section:
print(f" β Vehicle registration data not found in JSON")
return 0
# Normalize vehicle_section into dict of column_label -> list/value
if isinstance(vehicle_section, list):
# if list of dicts, pivot
if vehicle_section and isinstance(vehicle_section[0], dict):
flattened = {}
for entry in vehicle_section:
for k, v in entry.items():
flattened.setdefault(k, []).append(v)
vehicle_section = flattened
else:
# can't interpret, bail
vehicle_section = {}
if not isinstance(vehicle_section, dict):
try:
vehicle_section = dict(vehicle_section)
except Exception:
vehicle_section = {}
print(f" β
Found vehicle registration data with {len(vehicle_section)} columns")
# Find header row (look for registration + number or reg no)
header_row_idx = -1
header_row = None
for row_idx, row in enumerate(table.rows):
row_text = " ".join(get_clean_text(cell).lower() for cell in row.cells)
if ("registration" in row_text and "number" in row_text) or "reg no" in row_text or "registration no" in row_text:
header_row_idx = row_idx
header_row = row
break
if header_row_idx == -1:
print(f" β Could not find header row in vehicle table")
return 0
print(f" β
Found header row at index {header_row_idx}")
# Build master labels from vehicle_section keys
master_labels = {}
for orig_key in vehicle_section.keys():
norm = normalize_header_text(str(orig_key))
if norm:
# if there is collision, prefer longer orig_key (more specific)
if norm in master_labels:
if len(orig_key) > len(master_labels[norm]):
master_labels[norm] = orig_key
else:
master_labels[norm] = orig_key
# Map header cells using normalized token overlap + substring fallback
column_mapping = {}
for col_idx, cell in enumerate(header_row.cells):
header_text = get_clean_text(cell).strip()
if not header_text:
continue
header_key = header_text.strip().lower()
if header_key in {"no", "no.", "#"}:
continue
norm_header = normalize_header_text(header_text)
best_match = None
best_score = 0.0
# exact normalized match
if norm_header in master_labels:
best_match = master_labels[norm_header]
best_score = 1.0
else:
# token overlap
header_tokens = set(t for t in norm_header.split() if len(t) > 2)
for norm_key, orig_label in master_labels.items():
key_tokens = set(t for t in norm_key.split() if len(t) > 2)
if not key_tokens:
continue
common = header_tokens.intersection(key_tokens)
if common:
score = len(common) / max(1, len(header_tokens.union(key_tokens)))
else:
# substring fallback on normalized strings
if norm_header in norm_key or norm_key in norm_header:
score = min(len(norm_header), len(norm_key)) / max(len(norm_header), len(norm_key))
else:
score = 0.0
if score > best_score:
best_score = score
best_match = orig_label
# additional heuristic: if header contains 'roadworthiness' and any master_labels key contains that token, accept
if not best_match:
for norm_key, orig_label in master_labels.items():
if 'roadworthiness' in norm_header and 'roadworthiness' in norm_key:
best_match = orig_label
best_score = 0.65
break
if best_match and best_score >= 0.30:
column_mapping[col_idx] = best_match
print(f" π Column {col_idx}: '{header_text}' -> '{best_match}' (norm:'{norm_header}' score:{best_score:.2f})")
else:
print(f" β οΈ No mapping found for '{header_text}' (norm:'{norm_header}')")
record_unmatched_header(header_text)
if not column_mapping:
print(f" β No column mappings found")
return 0
# Determine how many rows of data to populate
max_data_rows = 0
for json_key, data in vehicle_section.items():
if isinstance(data, list):
max_data_rows = max(max_data_rows, len(data))
print(f" π Need to populate {max_data_rows} data rows")
# Populate or add rows
for data_row_index in range(max_data_rows):
table_row_idx = header_row_idx + 1 + data_row_index
if table_row_idx >= len(table.rows):
print(f" β οΈ Row {table_row_idx + 1} doesn't exist, adding one")
table.add_row()
row = table.rows[table_row_idx]
print(f" π Processing data row {table_row_idx + 1} (vehicle {data_row_index + 1})")
for col_idx, json_key in column_mapping.items():
if col_idx < len(row.cells):
cell = row.cells[col_idx]
column_data = vehicle_section.get(json_key, [])
if isinstance(column_data, list) and data_row_index < len(column_data):
replacement_value = str(column_data[data_row_index])
cell_text = get_clean_text(cell)
if has_red_text(cell) or not cell_text.strip():
if not cell_text.strip():
cell.text = replacement_value
replacements_made += 1
print(f" -> Added '{replacement_value}' to empty cell (col '{json_key}')")
else:
cell_replacements = replace_red_text_in_cell(cell, replacement_value)
replacements_made += cell_replacements
if cell_replacements > 0:
print(f" -> Replaced red text with '{replacement_value}' (col '{json_key}')")
return replacements_made
def handle_attendance_list_table_enhanced(table, flat_json):
"""Same as before β preserved behavior."""
replacements_made = 0
attendance_patterns = ["attendance list", "names and position titles", "attendees"]
found_attendance_row = None
for row_idx, row in enumerate(table.rows[:3]):
for cell_idx, cell in enumerate(row.cells):
cell_text = get_clean_text(cell).lower()
if any(pattern in cell_text for pattern in attendance_patterns):
found_attendance_row = row_idx
print(f" π― ENHANCED: Found Attendance List in row {row_idx + 1}, cell {cell_idx + 1}")
break
if found_attendance_row is not None:
break
if found_attendance_row is None:
return 0
attendance_value = None
attendance_search_keys = [
"Attendance List (Names and Position Titles).Attendance List (Names and Position Titles)",
"Attendance List (Names and Position Titles)",
"attendance list",
"attendees"
]
print(f" π Searching for attendance data in JSON...")
for search_key in attendance_search_keys:
kv = find_matching_json_key_and_value(search_key, flat_json)
if kv:
attendance_value = kv[1]
print(f" β
Found attendance data with key: '{kv[0]}'")
print(f" π Raw value: {attendance_value}")
break
if attendance_value is None:
print(f" β No attendance data found in JSON")
return 0
# Find red text candidate cell
target_cell = None
print(f" π Scanning ALL cells in attendance table for red text...")
for row_idx, row in enumerate(table.rows):
for cell_idx, cell in enumerate(row.cells):
if has_red_text(cell):
red_text = ""
for paragraph in cell.paragraphs:
for run in paragraph.runs:
if is_red(run):
red_text += run.text
if red_text.strip():
print(f" π― Found red text in row {row_idx + 1}, cell {cell_idx + 1}")
print(f" π Red text content: '{red_text[:60]}...'")
red_lower = red_text.lower()
if any(ind in red_lower for ind in ['manager', 'director', 'auditor', 'β', '-']):
target_cell = cell
print(f" β
This looks like attendance data - using this cell")
break
if target_cell:
break
if target_cell is None:
print(f" β οΈ No red text found that looks like attendance data")
return 0
if has_red_text(target_cell):
print(f" π§ Replacing red text with properly formatted attendance list...")
if isinstance(attendance_value, list):
attendance_list = [str(item).strip() for item in attendance_value if str(item).strip()]
else:
attendance_list = [str(attendance_value).strip()]
print(f" π Attendance items to add:")
for i, item in enumerate(attendance_list):
print(f" {i+1}. {item}")
replacement_text = "\n".join(attendance_list)
cell_replacements = replace_red_text_in_cell(target_cell, replacement_text)
replacements_made += cell_replacements
print(f" β
Added {len(attendance_list)} attendance items")
print(f" π Replacements made: {cell_replacements}")
return replacements_made
def fix_management_summary_details_column(table, flat_json):
"""Enhanced management summary processing with better data matching"""
replacements_made = 0
print(f" π― FIX: Management Summary DETAILS column processing")
# Determine which type of management summary this is
table_text = ""
for row in table.rows[:3]:
for cell in row.cells:
table_text += get_clean_text(cell).lower() + " "
mgmt_types = []
if "mass management" in table_text or "mass" in table_text:
mgmt_types.append("Mass Management Summary")
if "maintenance management" in table_text or "maintenance" in table_text:
mgmt_types.append("Maintenance Management Summary")
if "fatigue management" in table_text or "fatigue" in table_text:
mgmt_types.append("Fatigue Management Summary")
# Fallback detection
if not mgmt_types:
if any("std 5" in get_clean_text(c).lower() for r in table.rows for c in r.cells):
mgmt_types.append("Mass Management Summary")
if not mgmt_types:
print(f" β οΈ Could not determine management summary type")
return 0
for mgmt_type in mgmt_types:
print(f" β
Confirmed {mgmt_type} table processing")
# Look for management data in the JSON
mgmt_data = None
# Try direct key match first
if mgmt_type in flat_json:
mgmt_data = flat_json[mgmt_type]
# Try variations of the key
if not mgmt_data:
for key in flat_json.keys():
key_lower = key.lower()
mgmt_lower = mgmt_type.lower()
if mgmt_lower in key_lower or key_lower in mgmt_lower:
mgmt_data = flat_json[key]
print(f" β
Found data using key variation: '{key}'")
break
# If still no data, look for individual standard data
if not mgmt_data:
# Collect individual standard entries
mgmt_data = {}
for key, value in flat_json.items():
key_lower = key.lower()
# Look for standard entries related to this management type
if ("std " in key_lower and
(("mass" in mgmt_type.lower() and any(term in key_lower for term in ["verification", "internal review"])) or
("maintenance" in mgmt_type.lower() and any(term in key_lower for term in ["daily check", "internal review"])) or
("fatigue" in mgmt_type.lower() and any(term in key_lower for term in ["internal review"])))):
mgmt_data[key] = value
if mgmt_data:
print(f" β
Collected individual standard data: {list(mgmt_data.keys())}")
if not mgmt_data or not isinstance(mgmt_data, dict):
print(f" β οΈ No JSON management dict found for {mgmt_type}, skipping this type")
continue
# Process the table rows
for row_idx, row in enumerate(table.rows):
if len(row.cells) >= 2:
standard_cell = row.cells[0]
details_cell = row.cells[1]
standard_text = get_clean_text(standard_cell).strip().lower()
# Skip header rows
if "standard" in standard_text or "requirement" in standard_text or "details" in standard_text:
continue
# Look for specific standards
if "std 5" in standard_text or "verification" in standard_text:
if has_red_text(details_cell):
std_val = find_best_standard_value(mgmt_data, ["Std 5. Verification", "Std 5 Verification", "Std 5", "Verification"])
if std_val:
replacement_text = get_value_as_string(std_val, "Std 5. Verification")
cell_replacements = replace_red_text_in_cell(details_cell, replacement_text)
replacements_made += cell_replacements
if cell_replacements:
print(f" β
Replaced Std 5. Verification details for {mgmt_type}")
elif "std 6" in standard_text or "internal review" in standard_text:
if has_red_text(details_cell):
std_val = find_best_standard_value(mgmt_data, ["Std 6. Internal Review", "Std 6 Internal Review", "Std 6", "Internal Review"])
if std_val:
replacement_text = get_value_as_string(std_val, "Std 6. Internal Review")
cell_replacements = replace_red_text_in_cell(details_cell, replacement_text)
replacements_made += cell_replacements
if cell_replacements:
print(f" β
Replaced Std 6. Internal Review details for {mgmt_type}")
elif "std 1" in standard_text or "daily check" in standard_text:
if has_red_text(details_cell):
std_val = find_best_standard_value(mgmt_data, ["Std 1. Daily Check", "Std 1 Daily Check", "Std 1", "Daily Check"])
if std_val:
replacement_text = get_value_as_string(std_val, "Std 1. Daily Check")
cell_replacements = replace_red_text_in_cell(details_cell, replacement_text)
replacements_made += cell_replacements
if cell_replacements:
print(f" β
Replaced Std 1. Daily Check details for {mgmt_type}")
elif "std 7" in standard_text:
if has_red_text(details_cell):
std_val = find_best_standard_value(mgmt_data, ["Std 7. Internal Review", "Std 7 Internal Review", "Std 7"])
if std_val:
replacement_text = get_value_as_string(std_val, "Std 7. Internal Review")
cell_replacements = replace_red_text_in_cell(details_cell, replacement_text)
replacements_made += cell_replacements
if cell_replacements:
print(f" β
Replaced Std 7. Internal Review details for {mgmt_type}")
return replacements_made
def find_best_standard_value(mgmt_data, candidate_keys):
"""Find the best matching value for a standard from management data"""
for candidate in candidate_keys:
if candidate in mgmt_data:
return mgmt_data[candidate]
# Try fuzzy matching
for key, value in mgmt_data.items():
for candidate in candidate_keys:
if candidate.lower() in key.lower() or key.lower() in candidate.lower():
return value
return None
# ============================================================================
# Canonical operator declaration fixer β SAFER
# ============================================================================
def fix_operator_declaration_empty_values(table, flat_json):
"""
FIXED: Properly distinguish between auditor and operator data for Operator Declaration table
"""
replacements_made = 0
print(f" π― FIX: Operator Declaration empty values processing")
# Verify this is actually an operator declaration table
table_context = ""
for row in table.rows:
for cell in row.cells:
table_context += get_clean_text(cell).lower() + " "
if not ("print name" in table_context and "position title" in table_context):
return 0
print(f" β
Confirmed Operator Declaration table")
def parse_name_and_position(value):
"""Enhanced parsing for name/position combinations"""
if value is None:
return None, None
if isinstance(value, list):
if len(value) == 0:
return None, None
if len(value) == 1:
# Check if single item looks like "Name - Position" format
single_item = str(value[0]).strip()
if ' - ' in single_item:
parts = single_item.split(' - ', 1)
if len(parts) == 2:
return parts[0].strip(), parts[1].strip()
return single_item, None
# Handle [name, position] pattern or multiple attendance entries
if len(value) == 2:
first = str(value[0]).strip()
second = str(value[1]).strip()
# Check if both look like names (attendance list pattern)
if (' ' in first and ' ' in second and
not any(role in first.lower() for role in ['manager', 'director', 'auditor', 'officer']) and
not any(role in second.lower() for role in ['manager', 'director', 'auditor', 'officer'])):
# This is likely attendance list data, return first name only
return first, None
return first, second
# Multiple items - check if it's attendance list format
attendance_like = any(' - ' in str(item) for item in value)
if attendance_like:
# Extract first person's name from attendance format
first_entry = str(value[0]).strip()
if ' - ' in first_entry:
return first_entry.split(' - ')[0].strip(), first_entry.split(' - ')[1].strip()
return first_entry, None
# Join list elements as fallback
value = " ".join(str(v).strip() for v in value if str(v).strip())
s = str(value).strip()
if not s:
return None, None
# Split on common separators
separators = [r'\s+[-ββ]\s+', r'\s*,\s*', r'\s*\|\s*', r'\s*;\s*']
parts = None
for sep_pattern in separators:
parts = re.split(sep_pattern, s)
if len(parts) >= 2:
break
if parts and len(parts) >= 2:
left = parts[0].strip()
right = parts[1].strip()
# Check which part is more likely to be a position
role_indicators = ['manager', 'auditor', 'owner', 'director', 'supervisor',
'coordinator', 'driver', 'operator', 'representative', 'chief',
'president', 'ceo', 'cfo', 'secretary', 'treasurer', 'officer',
'compliance']
right_has_role = any(ind in right.lower() for ind in role_indicators)
left_has_role = any(ind in left.lower() for ind in role_indicators)
if right_has_role and not left_has_role:
return left, right # Standard: name, position
elif left_has_role and not right_has_role:
return right, left # Reversed: position, name
else:
# Default to left=name, right=position
return left, right
# Look for single word position at end
tokens = s.split()
if len(tokens) >= 2:
last_token = tokens[-1].lower()
role_indicators = ['manager', 'auditor', 'owner', 'director', 'supervisor',
'coordinator', 'driver', 'operator', 'representative', 'chief', 'officer']
if any(ind == last_token for ind in role_indicators):
return " ".join(tokens[:-1]), tokens[-1]
return s, None
def looks_like_role(s: str) -> bool:
"""Check if string looks like a job role/position"""
if not s:
return False
s = s.lower().strip()
# Common role words
roles = ['manager', 'auditor', 'owner', 'director', 'supervisor',
'coordinator', 'driver', 'operator', 'representative', 'chief',
'president', 'ceo', 'cfo', 'secretary', 'treasurer', 'officer']
# Direct role match
if any(role in s for role in roles):
return True
# Short descriptive terms (likely roles)
if len(s.split()) <= 3 and any(c.isalpha() for c in s) and len(s) > 1:
return True
return False
def looks_like_person_name(s: str) -> bool:
"""Check if string looks like a person's name"""
if not s:
return False
s = s.strip()
# Exclude company-like terms
company_terms = ['pty ltd', 'ltd', 'inc', 'corp', 'company', 'llc', 'plc']
s_lower = s.lower()
if any(term in s_lower for term in company_terms):
return False
# Should have letters and reasonable length
if len(s) > 1 and any(c.isalpha() for c in s):
return True
return False
# Process the table
for row_idx, row in enumerate(table.rows):
if len(row.cells) >= 2:
cell1_text = get_clean_text(row.cells[0]).strip().lower()
cell2_text = get_clean_text(row.cells[1]).strip().lower()
# Detect header row
if "print name" in cell1_text and "position" in cell2_text:
print(f" π Found header row at {row_idx + 1}")
# Process data row (next row after header)
if row_idx + 1 < len(table.rows):
data_row = table.rows[row_idx + 1]
if len(data_row.cells) >= 2:
name_cell = data_row.cells[0]
position_cell = data_row.cells[1]
current_name = get_clean_text(name_cell).strip()
current_position = get_clean_text(position_cell).strip()
print(f" π Current values: Name='{current_name}', Position='{current_position}'")
# IMPROVED: More comprehensive search for operator declaration data
final_name = None
final_position = None
# IMPROVED: Better strategy to find OPERATOR (not auditor) data
final_name = None
final_position = None
# Strategy 1: Look specifically in Attendance List for operator names
attendance_kv = find_matching_json_key_and_value("Attendance List (Names and Position Titles)", flat_json)
if attendance_kv and attendance_kv[1]:
attendance_data = attendance_kv[1]
print(f" π Found attendance data: {attendance_data}")
# Parse attendance list to find non-auditor names
if isinstance(attendance_data, list):
for entry in attendance_data:
entry_str = str(entry).strip()
if 'auditor' not in entry_str.lower() and entry_str:
# Parse this entry for name and position
parsed_name, parsed_pos = parse_name_and_position(entry_str)
if parsed_name and looks_like_person_name(parsed_name):
final_name = parsed_name
if parsed_pos and looks_like_role(parsed_pos):
final_position = parsed_pos
break
# Strategy 2: If no good name from attendance, try nested attendance keys
if not final_name:
nested_attendance_kv = find_matching_json_key_and_value("Attendance List (Names and Position Titles).Attendance List (Names and Position Titles)", flat_json)
if nested_attendance_kv and nested_attendance_kv[1]:
nested_data = nested_attendance_kv[1]
print(f" π Found nested attendance data: {nested_data}")
if isinstance(nested_data, list):
for entry in nested_data:
entry_str = str(entry).strip()
if 'auditor' not in entry_str.lower() and entry_str:
parsed_name, parsed_pos = parse_name_and_position(entry_str)
if parsed_name and looks_like_person_name(parsed_name):
final_name = parsed_name
if parsed_pos and looks_like_role(parsed_pos):
final_position = parsed_pos
break
# Strategy 3: Direct operator declaration keys (with filtering)
if not final_name:
search_strategies = [
("Operator Declaration.Print Name", "Operator Declaration.Position Title"),
("Print Name", "Position Title"),
]
for name_key_pattern, pos_key_pattern in search_strategies:
name_kv = find_matching_json_key_and_value(name_key_pattern, flat_json)
pos_kv = find_matching_json_key_and_value(pos_key_pattern, flat_json)
if name_kv and name_kv[1]:
# Filter out auditor names
potential_name = str(name_kv[1]).strip()
# Skip if this is clearly auditor data
if name_kv[0] and 'auditor' in name_kv[0].lower():
continue
# Skip common auditor names that appear in our data
auditor_names = ['greg dyer', 'greg', 'dyer']
if any(aud_name in potential_name.lower() for aud_name in auditor_names):
continue
name_from_val, pos_from_val = parse_name_and_position(name_kv[1])
if name_from_val and looks_like_person_name(name_from_val):
# Additional check - avoid auditor names
if not any(aud_name in name_from_val.lower() for aud_name in auditor_names):
final_name = name_from_val
if pos_from_val and looks_like_role(pos_from_val):
final_position = pos_from_val
if pos_kv and pos_kv[1] and not final_position:
# Only use if key doesn't indicate auditor data
if not (pos_kv[0] and 'auditor' in pos_kv[0].lower()):
pos_val = str(pos_kv[1]).strip()
if looks_like_role(pos_val) and 'auditor' not in pos_val.lower():
final_position = pos_val
if final_name:
break
# Strategy 4: Last resort - search all keys but with strict filtering
if not final_name:
print(f" π Searching all keys with strict operator filtering...")
for key, value in flat_json.items():
key_lower = key.lower()
# Skip keys that clearly relate to auditor
if 'auditor' in key_lower:
continue
# Look for operator-related keys
if (("operator" in key_lower and "name" in key_lower) or
("print name" in key_lower and "operator" in key_lower)):
if value and looks_like_person_name(str(value)):
potential_name = str(value).strip()
# Skip auditor names
auditor_names = ['greg dyer', 'greg', 'dyer']
if not any(aud_name in potential_name.lower() for aud_name in auditor_names):
name_from_val, pos_from_val = parse_name_and_position(value)
if name_from_val and looks_like_person_name(name_from_val):
final_name = name_from_val
if pos_from_val and looks_like_role(pos_from_val):
final_position = pos_from_val
break
# Clean up final values
if isinstance(final_name, (list, tuple)):
final_name = " ".join(str(x) for x in final_name).strip()
if isinstance(final_position, (list, tuple)):
final_position = " ".join(str(x) for x in final_position).strip()
final_name = str(final_name).strip() if final_name else None
final_position = str(final_position).strip() if final_position else None
print(f" π― Final extracted values: Name='{final_name}', Position='{final_position}'")
# Update name cell if needed
if (not current_name or has_red_text(name_cell)) and final_name and looks_like_person_name(final_name):
if has_red_text(name_cell):
replace_red_text_in_cell(name_cell, final_name)
else:
name_cell.text = final_name
replacements_made += 1
print(f" β
Updated Print Name -> '{final_name}'")
# Update position cell if needed
if (not current_position or has_red_text(position_cell)) and final_position and looks_like_role(final_position):
if has_red_text(position_cell):
replace_red_text_in_cell(position_cell, final_position)
else:
position_cell.text = final_position
replacements_made += 1
print(f" β
Updated Position Title -> '{final_position}'")
break # Found and processed the header row
# Mark table as processed
if replacements_made > 0:
try:
setattr(table, "_processed_operator_declaration", True)
print(" π Marked table as processed by Operator Declaration handler")
except Exception:
pass
return replacements_made
def handle_multiple_red_segments_in_cell(cell, flat_json):
replacements_made = 0
red_segments = extract_red_text_segments(cell)
if not red_segments:
return 0
for i, segment in enumerate(red_segments):
segment_text = segment['text'].strip()
if segment_text:
kv = find_matching_json_key_and_value(segment_text, flat_json)
if kv:
replacement_text = get_value_as_string(kv[1], segment_text)
if replace_single_segment(segment, replacement_text):
replacements_made += 1
print(f" β
Replaced segment {i+1}: '{segment_text}' -> '{replacement_text}'")
return replacements_made
def handle_nature_business_multiline_fix(cell, flat_json):
replacements_made = 0
red_text = ""
for paragraph in cell.paragraphs:
for run in paragraph.runs:
if is_red(run):
red_text += run.text
red_text = red_text.strip()
if not red_text:
return 0
nature_indicators = ["transport", "logistics", "freight", "delivery", "trucking", "haulage"]
if any(indicator in red_text.lower() for indicator in nature_indicators):
kv = find_matching_json_key_and_value("Nature of Business", flat_json) or find_matching_json_key_and_value("Nature of the Operators Business (Summary)", flat_json)
if kv:
replacement_text = get_value_as_string(kv[1], "Nature of Business")
cell_replacements = replace_red_text_in_cell(cell, replacement_text)
replacements_made += cell_replacements
print(f" β
Fixed Nature of Business multiline content")
return replacements_made
def handle_management_summary_fix(cell, flat_json):
replacements_made = 0
red_text = ""
for paragraph in cell.paragraphs:
for run in paragraph.runs:
if is_red(run):
red_text += run.text
red_text = red_text.strip()
if not red_text:
return 0
management_types = ["Mass Management Summary", "Maintenance Management Summary", "Fatigue Management Summary"]
for mgmt_type in management_types:
if mgmt_type in flat_json and isinstance(flat_json[mgmt_type], dict):
mgmt_data = flat_json[mgmt_type]
for std_key, std_value in mgmt_data.items():
if isinstance(std_value, list) and std_value:
if len(red_text) > 10:
for item in std_value:
if red_text.lower() in str(item).lower() or str(item).lower() in red_text.lower():
replacement_text = "\n".join(str(i) for i in std_value)
cell_replacements = replace_red_text_in_cell(cell, replacement_text)
replacements_made += cell_replacements
print(f" β
Fixed {mgmt_type} - {std_key}")
return replacements_made
return replacements_made
def handle_print_accreditation_section(table, flat_json):
replacements_made = 0
if getattr(table, "_processed_operator_declaration", False):
print(f" βοΈ Skipping Print Accreditation - this is an Operator Declaration table")
return 0
table_context = ""
for row in table.rows:
for cell in row.cells:
table_context += get_clean_text(cell).lower() + " "
if "operator declaration" in table_context or ("print name" in table_context and "position title" in table_context):
print(f" βοΈ Skipping Print Accreditation - this is an Operator Declaration table")
return 0
print(f" π Processing Print Accreditation section")
for row_idx, row in enumerate(table.rows):
for cell_idx, cell in enumerate(row.cells):
if has_red_text(cell):
accreditation_fields = [
"(print accreditation name)",
"Operator name (Legal entity)",
"Print accreditation name"
]
for field in accreditation_fields:
kv = find_matching_json_key_and_value(field, flat_json)
if kv:
replacement_text = get_value_as_string(kv[1], field)
if replacement_text.strip():
cell_replacements = replace_red_text_in_cell(cell, replacement_text)
replacements_made += cell_replacements
if cell_replacements > 0:
print(f" β
Fixed accreditation: {kv[0]}")
break
return replacements_made
def process_single_column_sections(cell, key_text, flat_json):
replacements_made = 0
if has_red_text(cell):
red_text = ""
for paragraph in cell.paragraphs:
for run in paragraph.runs:
if is_red(run):
red_text += run.text
if red_text.strip():
kv = find_matching_json_key_and_value(red_text.strip(), flat_json)
if not kv:
kv = find_matching_json_key_and_value(key_text, flat_json)
if kv:
section_replacement = get_value_as_string(kv[1], red_text.strip())
cell_replacements = replace_red_text_in_cell(cell, section_replacement)
replacements_made += cell_replacements
if cell_replacements > 0:
print(f" β
Fixed single column section: '{key_text}'")
return replacements_made
# ============================================================================
# Main table/paragraph/heading processing (preserve logic + use new helpers)
# ============================================================================
def process_tables(document, flat_json):
replacements_made = 0
for table_idx, table in enumerate(document.tables):
print(f"\nπ Processing table {table_idx + 1}:")
table_text = ""
for row in table.rows[:3]:
for cell in row.cells:
table_text += get_clean_text(cell).lower() + " "
management_summary_indicators = ["mass management", "maintenance management", "fatigue management"]
has_management = any(indicator in table_text for indicator in management_summary_indicators)
has_details = "details" in table_text
if has_management and has_details:
print(f" π Detected Management Summary table")
summary_fixes = fix_management_summary_details_column(table, flat_json)
replacements_made += summary_fixes
summary_replacements = 0
for row_idx, row in enumerate(table.rows):
for cell_idx, cell in enumerate(row.cells):
if has_red_text(cell):
for mgmt_type in ["Mass Management Summary", "Maintenance Management Summary", "Fatigue Management Summary"]:
if mgmt_type.lower().replace(" summary", "") in table_text:
if mgmt_type in flat_json:
mgmt_data = flat_json[mgmt_type]
if isinstance(mgmt_data, dict):
for std_key, std_value in mgmt_data.items():
if isinstance(std_value, list) and len(std_value) > 0:
red_text = "".join(run.text for p in cell.paragraphs for run in p.runs if is_red(run)).strip()
for item in std_value:
if len(red_text) > 15 and red_text.lower() in str(item).lower():
replacement_text = "\n".join(str(i) for i in std_value)
cell_replacements = replace_red_text_in_cell(cell, replacement_text)
summary_replacements += cell_replacements
print(f" β
Updated {std_key} with summary data")
break
break
if summary_replacements == 0:
cell_replacements = handle_management_summary_fix(cell, flat_json)
summary_replacements += cell_replacements
replacements_made += summary_replacements
continue
# Vehicle tables detection
vehicle_indicators = ["registration number", "sub-contractor", "weight verification", "rfs suspension", "registration"]
indicator_count = sum(1 for indicator in vehicle_indicators if indicator in table_text)
if indicator_count >= 2:
print(f" π Detected Vehicle Registration table")
vehicle_replacements = handle_vehicle_registration_table(table, flat_json)
replacements_made += vehicle_replacements
continue
# Attendance
if "attendance list" in table_text and "names and position titles" in table_text:
print(f" π₯ Detected Attendance List table")
attendance_replacements = handle_attendance_list_table_enhanced(table, flat_json)
replacements_made += attendance_replacements
continue
# Print Accreditation / Operator Declaration
print_accreditation_indicators = ["print name", "position title"]
indicator_count = sum(1 for indicator in print_accreditation_indicators if indicator in table_text)
if indicator_count >= 2 or ("print name" in table_text and "position title" in table_text):
print(f" π Detected Print Accreditation/Operator Declaration table")
declaration_fixes = fix_operator_declaration_empty_values(table, flat_json)
replacements_made += declaration_fixes
if not getattr(table, "_processed_operator_declaration", False):
print_accreditation_replacements = handle_print_accreditation_section(table, flat_json)
replacements_made += print_accreditation_replacements
continue
# Regular table rows handling (preserved)
for row_idx, row in enumerate(table.rows):
if len(row.cells) < 1:
continue
key_cell = row.cells[0]
key_text = get_clean_text(key_cell)
if not key_text:
continue
print(f" π Row {row_idx + 1}: Key = '{key_text}'")
kv = find_matching_json_key_and_value(key_text, flat_json)
json_value = kv[1] if kv else None
if json_value is not None:
replacement_text = get_value_as_string(json_value, key_text)
# ACN handling
if ("australian company number" in key_text.lower() or "company number" in key_text.lower()) and isinstance(json_value, list):
cell_replacements = handle_australian_company_number(row, json_value)
replacements_made += cell_replacements
# section headers
elif ("attendance list" in key_text.lower() or "nature of" in key_text.lower()) and row_idx + 1 < len(table.rows):
print(f" β
Section header detected, checking next row...")
next_row = table.rows[row_idx + 1]
for cell_idx, cell in enumerate(next_row.cells):
if has_red_text(cell):
print(f" β
Found red text in next row, cell {cell_idx + 1}")
if isinstance(json_value, list):
section_text = "\n".join(str(item) for item in json_value)
else:
section_text = replacement_text
cell_replacements = replace_red_text_in_cell(cell, section_text)
replacements_made += cell_replacements
if cell_replacements > 0:
print(f" -> Replaced section content")
# single column
elif len(row.cells) == 1 or (len(row.cells) > 1 and not any(has_red_text(row.cells[i]) for i in range(1, len(row.cells)))):
if has_red_text(key_cell):
cell_replacements = process_single_column_sections(key_cell, key_text, flat_json)
replacements_made += cell_replacements
# key-value pairs
else:
for cell_idx in range(1, len(row.cells)):
value_cell = row.cells[cell_idx]
if has_red_text(value_cell):
print(f" β
Found red text in column {cell_idx + 1}")
cell_replacements = replace_red_text_in_cell(value_cell, replacement_text)
replacements_made += cell_replacements
else:
# fallback single cell red-text key
if len(row.cells) == 1 and has_red_text(key_cell):
red_text = ""
for paragraph in key_cell.paragraphs:
for run in paragraph.runs:
if is_red(run):
red_text += run.text
if red_text.strip():
kv2 = find_matching_json_key_and_value(red_text.strip(), flat_json)
if kv2:
section_replacement = get_value_as_string(kv2[1], red_text.strip())
cell_replacements = replace_red_text_in_cell(key_cell, section_replacement)
replacements_made += cell_replacements
# attempt multiple red-segments or surgical fixes
for cell_idx in range(len(row.cells)):
cell = row.cells[cell_idx]
if has_red_text(cell):
cell_replacements = handle_multiple_red_segments_in_cell(cell, flat_json)
replacements_made += cell_replacements
if cell_replacements == 0:
surgical_fix = handle_nature_business_multiline_fix(cell, flat_json)
replacements_made += surgical_fix
if cell_replacements == 0:
management_summary_fix = handle_management_summary_fix(cell, flat_json)
replacements_made += management_summary_fix
# Final operator/auditor declaration check on last few tables
print(f"\nπ― Final check for Declaration tables...")
for table in document.tables[-3:]:
if len(table.rows) <= 4:
if getattr(table, "_processed_operator_declaration", False):
print(f" βοΈ Skipping - already processed by operator declaration handler")
continue
declaration_fix = fix_operator_declaration_empty_values(table, flat_json)
replacements_made += declaration_fix
return replacements_made
def process_paragraphs(document, flat_json):
replacements_made = 0
print(f"\nπ Processing paragraphs:")
for para_idx, paragraph in enumerate(document.paragraphs):
red_runs = [run for run in paragraph.runs if is_red(run) and run.text.strip()]
if red_runs:
red_text_only = "".join(run.text for run in red_runs).strip()
print(f" π Paragraph {para_idx + 1}: Found red text: '{red_text_only}'")
kv = find_matching_json_key_and_value(red_text_only, flat_json)
json_value = kv[1] if kv else None
if json_value is None:
if "AUDITOR SIGNATURE" in red_text_only.upper() or "DATE" in red_text_only.upper():
kv = find_matching_json_key_and_value("auditor signature", flat_json)
elif "OPERATOR SIGNATURE" in red_text_only.upper():
kv = find_matching_json_key_and_value("operator signature", flat_json)
json_value = kv[1] if kv else None
if json_value is not None:
replacement_text = get_value_as_string(json_value)
print(f" β
Replacing red text with: '{replacement_text}'")
red_runs[0].text = replacement_text
red_runs[0].font.color.rgb = RGBColor(0, 0, 0)
for run in red_runs[1:]:
run.text = ''
replacements_made += 1
return replacements_made
def process_headings(document, flat_json):
"""
IMPROVED: Better heading processing that avoids mixing company data
"""
replacements_made = 0
print(f"\nπ Processing headings:")
paragraphs = document.paragraphs
# Extract the correct operator name from the JSON data
operator_name = None
for key, value in flat_json.items():
if "operator name" in key.lower() and "legal entity" in key.lower():
if isinstance(value, list) and value:
operator_name = str(value[0]).strip()
else:
operator_name = str(value).strip()
break
if not operator_name:
# Fallback - try other operator name keys
for key, value in flat_json.items():
if ("operator" in key.lower() and "name" in key.lower()) or key.lower() == "operator name":
if isinstance(value, list) and value:
operator_name = str(value[0]).strip()
elif value:
operator_name = str(value).strip()
break
print(f" π Using operator name: '{operator_name}'")
for para_idx, paragraph in enumerate(paragraphs):
paragraph_text = paragraph.text.strip()
if not paragraph_text:
continue
matched_heading = None
for category, patterns in HEADING_PATTERNS.items():
for pattern in patterns:
if re.search(pattern, paragraph_text, re.IGNORECASE):
matched_heading = pattern
break
if matched_heading:
break
if matched_heading:
print(f" π Found heading at paragraph {para_idx + 1}: '{paragraph_text}'")
# Check if the heading itself has red text
if has_red_text_in_paragraph(paragraph):
print(f" π΄ Found red text in heading itself")
heading_replacements = process_red_text_in_heading_paragraph(paragraph, paragraph_text, flat_json, operator_name)
replacements_made += heading_replacements
# Look for red text in paragraphs immediately following this heading
for next_para_offset in range(1, 6):
next_para_idx = para_idx + next_para_offset
if next_para_idx >= len(paragraphs):
break
next_paragraph = paragraphs[next_para_idx]
next_text = next_paragraph.text.strip()
if not next_text:
continue
# Stop if we hit another heading
is_another_heading = False
for category, patterns in HEADING_PATTERNS.items():
for pattern in patterns:
if re.search(pattern, next_text, re.IGNORECASE):
is_another_heading = True
break
if is_another_heading:
break
if is_another_heading:
break
if has_red_text_in_paragraph(next_paragraph):
print(f" π΄ Found red text in paragraph {next_para_idx + 1} after heading")
context_replacements = process_red_text_in_context_paragraph(
next_paragraph,
paragraph_text,
flat_json,
operator_name
)
replacements_made += context_replacements
return replacements_made
def process_red_text_in_paragraph(paragraph, context_text, flat_json):
replacements_made = 0
red_text_segments = []
for run in paragraph.runs:
if is_red(run) and run.text.strip():
red_text_segments.append(run.text.strip())
if not red_text_segments:
return 0
combined_red_text = " ".join(red_text_segments).strip()
print(f" π Red text found: '{combined_red_text}'")
kv = find_matching_json_key_and_value(combined_red_text, flat_json)
json_value = kv[1] if kv else None
if json_value is None:
if "NHVAS APPROVED AUDITOR" in context_text.upper():
auditor_fields = ["auditor name", "auditor", "nhvas auditor", "approved auditor", "print name"]
for field in auditor_fields:
kv = find_matching_json_key_and_value(field, flat_json)
if kv:
print(f" β
Found auditor match with field: '{kv[0]}'")
json_value = kv[1]
break
elif "OPERATOR DECLARATION" in context_text.upper():
operator_fields = ["operator name", "operator", "company name", "organisation name", "print name"]
for field in operator_fields:
kv = find_matching_json_key_and_value(field, flat_json)
if kv:
print(f" β
Found operator match with field: '{kv[0]}'")
json_value = kv[1]
break
if json_value is None:
context_queries = [f"{context_text} {combined_red_text}", combined_red_text, context_text]
for query in context_queries:
kv = find_matching_json_key_and_value(query, flat_json)
if kv:
print(f" β
Found match with combined query -> {kv[0]}")
json_value = kv[1]
break
if json_value is not None:
replacement_text = get_value_as_string(json_value, combined_red_text)
red_runs = [run for run in paragraph.runs if is_red(run) and run.text.strip()]
if red_runs:
red_runs[0].text = replacement_text
red_runs[0].font.color.rgb = RGBColor(0, 0, 0)
for run in red_runs[1:]:
run.text = ''
replacements_made = 1
print(f" β
Replaced with: '{replacement_text}'")
else:
print(f" β No match found for red text: '{combined_red_text}'")
return replacements_made
def process_red_text_in_context_paragraph(paragraph, heading_text, flat_json, operator_name):
"""Process red text found in paragraphs following headings"""
replacements_made = 0
red_text_segments = []
for run in paragraph.runs:
if is_red(run) and run.text.strip():
red_text_segments.append(run.text.strip())
if not red_text_segments:
return 0
combined_red_text = " ".join(red_text_segments).strip()
print(f" π Red text found: '{combined_red_text}'")
replacement_value = None
# Determine what to replace based on heading context
if any(mgmt_type in heading_text.upper() for mgmt_type in ["MAINTENANCE MANAGEMENT", "MASS MANAGEMENT", "FATIGUE MANAGEMENT"]):
# For management section headings, replace with operator name
if operator_name:
replacement_value = operator_name
print(f" β
Using operator name for management section: '{operator_name}'")
elif "NHVAS APPROVED AUDITOR DECLARATION" in heading_text.upper():
# For auditor declarations, look for auditor name
auditor_name = None
for key, value in flat_json.items():
if "auditor" in key.lower() and "name" in key.lower():
if isinstance(value, list) and value:
auditor_name = str(value[0]).strip()
elif value:
auditor_name = str(value).strip()
break
if auditor_name:
replacement_value = auditor_name
print(f" β
Using auditor name: '{auditor_name}'")
elif "OPERATOR DECLARATION" in heading_text.upper():
# For operator declarations, use operator name
if operator_name:
replacement_value = operator_name
print(f" β
Using operator name for operator declaration: '{operator_name}'")
else:
# For other headings, try to find a relevant match
# First try direct match
kv = find_matching_json_key_and_value(combined_red_text, flat_json)
if kv:
replacement_value = get_value_as_string(kv[1], combined_red_text)
else:
# Try contextual search with heading
context_queries = [f"{heading_text} {combined_red_text}", combined_red_text, heading_text]
for query in context_queries:
kv = find_matching_json_key_and_value(query, flat_json)
if kv:
replacement_value = get_value_as_string(kv[1], combined_red_text)
print(f" β
Found match with combined query: {kv[0]}")
break
# Apply the replacement if we found a suitable value
if replacement_value:
red_runs = [run for run in paragraph.runs if is_red(run) and run.text.strip()]
if red_runs:
red_runs[0].text = replacement_value
red_runs[0].font.color.rgb = RGBColor(0, 0, 0)
for run in red_runs[1:]:
run.text = ''
replacements_made = 1
print(f" β
Replaced with: '{replacement_value}'")
else:
print(f" β No suitable replacement found for: '{combined_red_text}'")
return replacements_made
# ============================================================================
# Orchestrator
# ============================================================================
def process_hf(json_file, docx_file, output_file):
try:
if hasattr(json_file, "read"):
json_data = json.load(json_file)
else:
with open(json_file, 'r', encoding='utf-8') as f:
json_data = json.load(f)
flat_json = flatten_json(json_data)
print("π Available JSON keys (sample):")
for i, (key, value) in enumerate(sorted(flat_json.items())):
if i < 10:
print(f" - {key}: {value}")
print(f" ... and {len(flat_json) - 10} more keys\n")
if hasattr(docx_file, "read"):
doc = Document(docx_file)
else:
doc = Document(docx_file)
print("π Starting comprehensive document processing...")
table_replacements = process_tables(doc, flat_json)
paragraph_replacements = process_paragraphs(doc, flat_json)
heading_replacements = process_headings(doc, flat_json)
red_text_para = process_red_text_in_paragraph(paragraph, context_text, flat_json)
total_replacements = table_replacements + paragraph_replacements + heading_replacements + red_text_para
# Save unmatched headers for iterative improvement
if _unmatched_headers:
try:
tmp_path = "/tmp/unmatched_headers.json"
with open(tmp_path, 'w', encoding='utf-8') as f:
json.dump(_unmatched_headers, f, indent=2, ensure_ascii=False)
print(f"β
Unmatched headers saved to {tmp_path}")
except Exception as e:
print(f"β οΈ Could not save unmatched headers: {e}")
if hasattr(output_file, "write"):
doc.save(output_file)
else:
doc.save(output_file)
print(f"\nβ
Document saved as: {output_file}")
print(f"β
Total replacements: {total_replacements}")
print(f" π Tables: {table_replacements}")
print(f" π Paragraphs: {paragraph_replacements}")
print(f" π Headings: {heading_replacements}")
print(f"π Processing complete!")
except FileNotFoundError as e:
print(f"β File not found: {e}")
except Exception as e:
print(f"β Error: {e}")
import traceback
traceback.print_exc()
if __name__ == "__main__":
import sys
if len(sys.argv) != 4:
print("Usage: python pipeline.py <input_docx> <updated_json> <output_docx>")
exit(1)
docx_path = sys.argv[1]
json_path = sys.argv[2]
output_path = sys.argv[3]
process_hf(json_path, docx_path, output_path) |