Spaces:
Running
Running
File size: 23,576 Bytes
e8b46b5 24ad2d2 1055fe1 f4b6b63 e8b46b5 24ad2d2 f4b6b63 7a2fc08 f4b6b63 7a2fc08 e8b46b5 1055fe1 f4b6b63 1055fe1 f4b6b63 1055fe1 f4b6b63 7a2fc08 f4b6b63 7a2fc08 f4b6b63 7a2fc08 f4b6b63 7a2fc08 f4b6b63 7a2fc08 e8b46b5 f4b6b63 7a2fc08 f4b6b63 7a2fc08 1055fe1 24ad2d2 f4b6b63 1487325 f4b6b63 1487325 24ad2d2 f4b6b63 1487325 24ad2d2 f4b6b63 24ad2d2 f4b6b63 1487325 f4b6b63 24ad2d2 f4b6b63 7a2fc08 f4b6b63 1055fe1 f4b6b63 24ad2d2 f4b6b63 1055fe1 f4b6b63 1055fe1 24ad2d2 f4b6b63 c4e2e43 7a2fc08 c4e2e43 f4b6b63 c4e2e43 1487325 f4b6b63 c4e2e43 1487325 c4e2e43 24ad2d2 f4b6b63 1055fe1 7a2fc08 1055fe1 f4b6b63 1055fe1 7a2fc08 f4b6b63 24ad2d2 f4b6b63 1055fe1 7a2fc08 f4b6b63 1055fe1 f4b6b63 1055fe1 f4b6b63 24ad2d2 1055fe1 f4b6b63 1055fe1 f4b6b63 1055fe1 f4b6b63 1055fe1 f4b6b63 1055fe1 f4b6b63 1055fe1 f4b6b63 1055fe1 f4b6b63 1055fe1 f4b6b63 1055fe1 f4b6b63 1055fe1 f4b6b63 1055fe1 f4b6b63 1055fe1 f4b6b63 1055fe1 f4b6b63 1055fe1 f4b6b63 1055fe1 7a2fc08 1055fe1 f4b6b63 1055fe1 f4b6b63 1055fe1 f4b6b63 1055fe1 f4b6b63 1055fe1 f4b6b63 1055fe1 f4b6b63 1487325 7a2fc08 1487325 24ad2d2 1487325 f4b6b63 1487325 24ad2d2 1487325 24ad2d2 1487325 f4b6b63 1487325 f4b6b63 7a2fc08 24ad2d2 1487325 24ad2d2 f4b6b63 1487325 f4b6b63 1487325 24ad2d2 f4b6b63 24ad2d2 1055fe1 24ad2d2 1055fe1 24ad2d2 1055fe1 f4b6b63 1055fe1 f4b6b63 24ad2d2 1055fe1 e8b46b5 1055fe1 f4b6b63 1055fe1 24ad2d2 1055fe1 24ad2d2 1055fe1 f4b6b63 1055fe1 f4b6b63 1055fe1 f4b6b63 1055fe1 f4b6b63 1055fe1 f4b6b63 1055fe1 24ad2d2 1055fe1 f4b6b63 1055fe1 f4b6b63 1055fe1 24ad2d2 f4b6b63 1055fe1 f4b6b63 1055fe1 f4b6b63 1055fe1 f4b6b63 e8b46b5 1055fe1 24ad2d2 f4b6b63 1055fe1 7a2fc08 1055fe1 f4b6b63 24ad2d2 f4b6b63 1055fe1 24ad2d2 1055fe1 f4b6b63 24ad2d2 e8b46b5 f4b6b63 e8b46b5 f4b6b63 1055fe1 f4b6b63 1055fe1 f4b6b63 1055fe1 f4b6b63 1055fe1 f4b6b63 1055fe1 f4b6b63 1055fe1 f4b6b63 1055fe1 f4b6b63 1055fe1 f4b6b63 1055fe1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 |
#!/usr/bin/env python3
"""
extract_red_text.py
"""
import re
import json
import sys
from io import BytesIO
from docx import Document
from docx.oxml.ns import qn
# Import schema constants (TABLE_SCHEMAS, HEADING_PATTERNS, PARAGRAPH_PATTERNS, GLOBAL_SETTINGS)
# Ensure master_key.py is present in same dir / importable path
from master_key import TABLE_SCHEMAS, HEADING_PATTERNS, PARAGRAPH_PATTERNS, GLOBAL_SETTINGS
def is_red_font(run):
"""
Robust detection of 'red' font in a run.
Tries several sources:
- python-docx run.font.color.rgb (safe-guarded)
- raw XML rPr/w:color value (hex)
Returns True if color appears predominantly red.
"""
# Quick guard
if run is None:
return False
# 1) Try docx high-level color API if available
try:
col = getattr(run.font, "color", None)
if col is not None:
rgb_val = getattr(col, "rgb", None)
if rgb_val:
# rgb_val might be an RGBColor object or a tuple/list or hex-string
try:
# If it's sequence-like (tuple/list) with 3 ints
if isinstance(rgb_val, (tuple, list)) and len(rgb_val) == 3:
rr, gg, bb = rgb_val
else:
# Try string representation like 'FF0000' or 'ff0000'
hexstr = str(rgb_val).strip()
if re.fullmatch(r"[0-9A-Fa-f]{6}", hexstr):
rr, gg, bb = int(hexstr[0:2], 16), int(hexstr[2:4], 16), int(hexstr[4:6], 16)
else:
# unknown format - fall through to XML check
rr = gg = bb = None
if rr is not None:
# Heuristic thresholds for 'red-ish'
if rr > 150 and gg < 120 and bb < 120 and (rr - gg) > 30 and (rr - bb) > 30:
return True
except Exception:
# fall back to rPr introspection below
pass
except Exception:
# ignore and continue to XML method
pass
# 2) Inspect raw XML run properties for <w:color w:val="RRGGBB" />
try:
rPr = getattr(run._element, "rPr", None)
if rPr is not None:
clr = rPr.find(qn('w:color'))
if clr is not None:
val = clr.get(qn('w:val')) or clr.get('w:val') or clr.get('val')
if val and isinstance(val, str):
val = val.strip()
# sometimes color is provided as 'FF0000' hex or shorthand
if re.fullmatch(r"[0-9A-Fa-f]{6}", val):
rr, gg, bb = int(val[0:2], 16), int(val[2:4], 16), int(val[4:6], 16)
if rr > 150 and gg < 120 and bb < 120 and (rr - gg) > 30 and (rr - bb) > 30:
return True
except Exception:
pass
return False
def _prev_para_text(tbl):
"""Return text of previous paragraph node before a given table element."""
prev = tbl._tbl.getprevious()
while prev is not None and not prev.tag.endswith("}p"):
prev = prev.getprevious()
if prev is None:
return ""
# gather all text nodes under the paragraph element
return "".join(node.text for node in prev.iter() if node.tag.endswith("}t") and node.text).strip()
def normalize_text(text):
"""Normalize text for more reliable matching (collapse whitespace)."""
if text is None:
return ""
return re.sub(r'\s+', ' ', text.strip())
def fuzzy_match_heading(heading, patterns):
"""
Attempt fuzzy matching of heading against regex patterns.
patterns is a list of pattern dicts or strings.
"""
heading_norm = normalize_text(heading.upper())
for p in patterns:
if isinstance(p, dict):
pat = p.get("text", "")
else:
pat = p
try:
if re.search(pat, heading_norm, re.IGNORECASE):
return True
except re.error:
# treat as plain substring fallback
if pat and pat.upper() in heading_norm:
return True
return False
def get_table_context(tbl):
"""Return context metadata for a table to aid schema matching."""
heading = normalize_text(_prev_para_text(tbl))
headers = []
if tbl.rows:
# collect header text of first row, keeping cell order
headers = [normalize_text(c.text) for c in tbl.rows[0].cells]
col0 = [normalize_text(r.cells[0].text) for r in tbl.rows if r.cells and r.cells[0].text.strip()]
first_cell = normalize_text(tbl.rows[0].cells[0].text) if tbl.rows else ""
all_cells = []
for row in tbl.rows:
for cell in row.cells:
text = normalize_text(cell.text)
if text:
all_cells.append(text)
return {
'heading': heading,
'headers': headers,
'col0': col0,
'first_cell': first_cell,
'all_cells': all_cells,
'num_rows': len(tbl.rows),
'num_cols': len(tbl.rows[0].cells) if tbl.rows else 0
}
def calculate_schema_match_score(schema_name, spec, context):
"""
Return (score, reasons[]) for how well a table context matches a schema.
Heuristic-based scoring; vehicle registration and 'DETAILS' summary boosts added.
"""
score = 0
reasons = []
table_text = " ".join(context.get('headers', [])).lower() + " " + context.get('heading', "").lower()
# Vehicle Registration specific boost
if "Vehicle Registration" in schema_name:
vehicle_keywords = ["registration", "vehicle", "sub-contractor", "weight verification", "rfs suspension", "roadworthiness"]
keyword_matches = sum(1 for kw in vehicle_keywords if kw in table_text)
if keyword_matches >= 2:
score += 150
reasons.append(f"Vehicle keywords matched: {keyword_matches}")
elif keyword_matches >= 1:
score += 75
reasons.append(f"Some vehicle keywords matched: {keyword_matches}")
# Summary DETAILS boost
if "Summary" in schema_name and "details" in table_text:
score += 100
reasons.append("Summary with DETAILS found")
if "Summary" not in schema_name and "details" in table_text:
score -= 75
reasons.append("Non-summary schema penalized due to DETAILS column presence")
# Context exclusions
for exclusion in spec.get("context_exclusions", []):
if exclusion.lower() in table_text:
score -= 50
reasons.append(f"Context exclusion: {exclusion}")
# Context keywords positive matches
kw_count = 0
for kw in spec.get("context_keywords", []):
if kw.lower() in table_text:
kw_count += 1
if kw_count:
score += kw_count * 15
reasons.append(f"Context keywords matched: {kw_count}")
# First-cell exact match
if context.get('first_cell') and context['first_cell'].upper() == schema_name.upper():
score += 100
reasons.append("Exact first cell match")
# Heading pattern match
for h in spec.get("headings", []) or []:
pat = h.get("text") if isinstance(h, dict) and h.get("text") else h
try:
if pat and re.search(pat, context.get('heading', ""), re.IGNORECASE):
score += 50
reasons.append(f"Heading regex matched: {pat}")
break
except re.error:
if pat and pat.lower() in context.get('heading', "").lower():
score += 50
reasons.append(f"Heading substring matched: {pat}")
break
# Column header matching (strict)
if spec.get("columns"):
cols = [normalize_text(c) for c in spec["columns"]]
matches = 0
for col in cols:
if any(col.upper() in h.upper() for h in context.get('headers', [])):
matches += 1
if matches == len(cols):
score += 60
reasons.append("All expected columns matched exactly")
elif matches > 0:
score += matches * 20
reasons.append(f"Partial column matches: {matches}/{len(cols)}")
# Label matching for left-oriented tables
if spec.get("orientation") == "left":
labels = [normalize_text(lbl) for lbl in spec.get("labels", [])]
matches = 0
for lbl in labels:
if any(lbl.upper() in c.upper() or c.upper() in lbl.upper() for c in context.get('col0', [])):
matches += 1
if matches > 0:
score += (matches / max(1, len(labels))) * 30
reasons.append(f"Left-orientation label matches: {matches}/{len(labels)}")
# Row1 (header row) flexible matching
elif spec.get("orientation") == "row1":
labels = [normalize_text(lbl) for lbl in spec.get("labels", [])]
matches = 0.0
header_texts = " ".join(context.get('headers', [])).upper()
for lbl in labels:
label_upper = lbl.upper()
# exact in any header
if any(label_upper in h.upper() for h in context.get('headers', [])):
matches += 1.0
else:
# partial words from label in header_texts
for word in label_upper.split():
if len(word) > 3 and word in header_texts:
matches += 0.5
break
if matches > 0:
score += (matches / max(1.0, len(labels))) * 40
reasons.append(f"Row1 header-like matches: {matches}/{len(labels)}")
# Special handling for declaration schemas
if schema_name == "Operator Declaration":
# boost if 'print name' first cell and heading indicates operator declaration
if context.get('first_cell', "").upper().startswith("PRINT"):
if "OPERATOR DECLARATION" in context.get('heading', "").upper():
score += 80
reasons.append("Operator Declaration context & first-cell indicate match")
elif any("MANAGER" in c.upper() for c in context.get('all_cells', [])):
score += 60
reasons.append("Manager found in cells for Operator Declaration")
if schema_name == "NHVAS Approved Auditor Declaration":
if context.get('first_cell', "").upper().startswith("PRINT"):
# penalize where manager words appear (to reduce false positives)
if any("MANAGER" in c.upper() for c in context.get('all_cells', [])):
score -= 50
reasons.append("Penalty: found manager text in auditor declaration table")
return score, reasons
def match_table_schema(tbl):
"""
Iterate TABLE_SCHEMAS and pick best match by score threshold.
Returns schema name or None when below threshold.
"""
context = get_table_context(tbl)
best_match = None
best_score = float("-inf")
for name, spec in TABLE_SCHEMAS.items():
try:
score, reasons = calculate_schema_match_score(name, spec, context)
except Exception:
score, reasons = 0, ["error computing score"]
if score > best_score:
best_score = score
best_match = name
# threshold to avoid spurious picks
if best_score >= 20:
return best_match
return None
def check_multi_schema_table(tbl):
"""
Identify tables that contain multiple logical schemas (e.g., Operator Information + Contact Details)
Return list of schema names if multi, else None.
"""
context = get_table_context(tbl)
operator_labels = ["Operator name (Legal entity)", "NHVAS Accreditation No.", "Registered trading name/s",
"Australian Company Number", "NHVAS Manual"]
contact_labels = ["Operator business address", "Operator Postal address", "Email address", "Operator Telephone Number"]
has_operator = any(any(op_lbl.upper() in cell.upper() for op_lbl in operator_labels) for cell in context.get('col0', []))
has_contact = any(any(cont_lbl.upper() in cell.upper() for cont_lbl in contact_labels) for cell in context.get('col0', []))
if has_operator and has_contact:
return ["Operator Information", "Operator contact details"]
return None
def extract_multi_schema_table(tbl, schemas):
"""
For tables that embed multiple schema sections vertically (left orientation), split and extract.
Returns a dict mapping schema_name -> {label: [values,...]}
"""
result = {}
for schema_name in schemas:
if schema_name not in TABLE_SCHEMAS:
continue
spec = TABLE_SCHEMAS[schema_name]
schema_data = {}
# iterate rows and match the left-most cell against spec labels
for ri, row in enumerate(tbl.rows):
if not row.cells:
continue
row_label = normalize_text(row.cells[0].text)
belongs = False
matched_label = None
for spec_label in spec.get("labels", []):
spec_norm = normalize_text(spec_label).upper()
row_norm = row_label.upper()
if spec_norm == row_norm or spec_norm in row_norm or row_norm in spec_norm:
belongs = True
matched_label = spec_label
break
if not belongs:
continue
# gather red-text from the row's value cells (all others)
for ci, cell in enumerate(row.cells[1:], start=1):
red_txt = "".join(run.text for p in cell.paragraphs for run in p.runs if is_red_font(run)).strip()
if red_txt:
schema_data.setdefault(matched_label, []).append(red_txt)
if schema_data:
result[schema_name] = schema_data
return result
def extract_table_data(tbl, schema_name, spec):
"""
Extract red text from a table for a given schema.
Special handling for Vehicle Registration (row1 header orientation).
"""
# Vehicle Registration special-case (headers in first row)
if "Vehicle Registration" in schema_name:
print(f" π EXTRACTION FIX: Processing Vehicle Registration table")
labels = spec.get("labels", [])
collected = {lbl: [] for lbl in labels}
seen = {lbl: set() for lbl in labels}
if len(tbl.rows) < 2:
print(" β Vehicle table has less than 2 rows; skipping")
return {}
header_row = tbl.rows[0]
column_mapping = {}
print(f" π Mapping {len(header_row.cells)} header cells to labels")
for col_idx, cell in enumerate(header_row.cells):
header_text = normalize_text(cell.text).strip()
if not header_text:
continue
print(f" Column {col_idx}: '{header_text}'")
best_match = None
best_score = 0.0
for label in labels:
# exact match
if header_text.upper() == label.upper():
best_match = label
best_score = 1.0
break
# partial token overlap scoring
header_words = set(word.upper() for word in header_text.split() if len(word) > 2)
label_words = set(word.upper() for word in label.split() if len(word) > 2)
if header_words and label_words:
common = header_words.intersection(label_words)
if common:
score = len(common) / max(len(header_words), len(label_words))
if score > best_score and score >= 0.35: # relaxed threshold for OCR noise
best_score = score
best_match = label
if best_match:
column_mapping[col_idx] = best_match
print(f" β
Mapped to: '{best_match}' (score: {best_score:.2f})")
else:
# additional heuristics: simple substring matches
for label in labels:
if label.lower() in header_text.lower() or header_text.lower() in label.lower():
column_mapping[col_idx] = label
print(f" β
Mapped by substring to: '{label}'")
break
else:
print(f" β οΈ No mapping found for '{header_text}'")
print(f" π Total column mappings: {len(column_mapping)}")
# Extract data rows
for row_idx in range(1, len(tbl.rows)):
row = tbl.rows[row_idx]
print(f" π Processing data row {row_idx}")
for col_idx, cell in enumerate(row.cells):
if col_idx not in column_mapping:
continue
label = column_mapping[col_idx]
red_txt = "".join(run.text for p in cell.paragraphs for run in p.runs if is_red_font(run)).strip()
if red_txt:
print(f" π΄ Found red text in '{label}': '{red_txt}'")
if red_txt not in seen[label]:
seen[label].add(red_txt)
collected[label].append(red_txt)
result = {k: v for k, v in collected.items() if v}
print(f" β
Vehicle Registration extracted: {len(result)} columns with data")
return result
# Generic extraction for other table types
labels = spec.get("labels", []) + [schema_name]
collected = {lbl: [] for lbl in labels}
seen = {lbl: set() for lbl in labels}
by_col = (spec.get("orientation") == "row1")
start_row = 1 if by_col else 0
rows = tbl.rows[start_row:]
for ri, row in enumerate(rows):
for ci, cell in enumerate(row.cells):
red_txt = "".join(run.text for p in cell.paragraphs for run in p.runs if is_red_font(run)).strip()
if not red_txt:
continue
if by_col:
# column-wise mapping (header labels)
if ci < len(spec.get("labels", [])):
lbl = spec["labels"][ci]
else:
lbl = schema_name
else:
# left-oriented: match left label
raw_label = normalize_text(row.cells[0].text)
lbl = None
for spec_label in spec.get("labels", []):
if normalize_text(spec_label).upper() == raw_label.upper():
lbl = spec_label
break
if not lbl:
for spec_label in spec.get("labels", []):
spec_norm = normalize_text(spec_label).upper()
raw_norm = raw_label.upper()
if spec_norm in raw_norm or raw_norm in spec_norm:
lbl = spec_label
break
if not lbl:
lbl = schema_name
if red_txt not in seen[lbl]:
seen[lbl].add(red_txt)
collected[lbl].append(red_txt)
return {k: v for k, v in collected.items() if v}
def extract_red_text(input_doc):
"""
Main extraction function.
Accepts a docx.Document object or a path string (filename).
Returns dictionary of extracted red-text organized by schema.
"""
if isinstance(input_doc, str):
doc = Document(input_doc)
else:
doc = input_doc
out = {}
table_count = 0
for tbl in doc.tables:
table_count += 1
# Check for multi-schema tables first
multi_schemas = check_multi_schema_table(tbl)
if multi_schemas:
multi_data = extract_multi_schema_table(tbl, multi_schemas)
for schema_name, schema_data in multi_data.items():
if schema_data:
if schema_name in out:
for k, v in schema_data.items():
out[schema_name].setdefault(k, []).extend(v)
else:
out[schema_name] = schema_data
continue
# match a single schema
schema = match_table_schema(tbl)
if not schema:
# no confident schema match
continue
spec = TABLE_SCHEMAS.get(schema, {})
data = extract_table_data(tbl, schema, spec)
if data:
if schema in out:
for k, v in data.items():
out[schema].setdefault(k, []).extend(v)
else:
out[schema] = data
# Paragraph-level red-text extraction (with contextual heading resolution)
paras = {}
for idx, para in enumerate(doc.paragraphs):
red_txt = "".join(r.text for r in para.runs if is_red_font(r)).strip()
if not red_txt:
continue
# attempt to find nearest preceding heading paragraph (using HEADING_PATTERNS)
context = None
for j in range(idx - 1, -1, -1):
txt = normalize_text(doc.paragraphs[j].text)
if not txt:
continue
all_patterns = HEADING_PATTERNS.get("main", []) + HEADING_PATTERNS.get("sub", [])
if any(re.search(p, txt, re.IGNORECASE) for p in all_patterns):
context = txt
break
# fallback: date-line mapping for 'Date' single-line red texts
if not context and re.fullmatch(PARAGRAPH_PATTERNS.get("date_line", r"^\s*\d{1,2}(?:st|nd|rd|th)?\s+[A-Za-z]+\s+\d{4}\s*$|^Date$"), red_txt):
context = "Date"
if not context:
context = "(para)"
paras.setdefault(context, []).append(red_txt)
if paras:
out["paragraphs"] = paras
return out
def extract_red_text_filelike(input_file, output_file):
"""
Accepts:
- input_file: file-like object (BytesIO/File) or path
- output_file: file-like object (opened for writing text) or path
Returns the parsed dictionary.
Writes the JSON to output_file if possible.
"""
# Reset file-like if necessary
if hasattr(input_file, "seek"):
try:
input_file.seek(0)
except Exception:
pass
# Load Document
if isinstance(input_file, (str, bytes)):
doc = Document(input_file)
else:
doc = Document(input_file)
result = extract_red_text(doc)
# Write result out
if hasattr(output_file, "write"):
json.dump(result, output_file, indent=2, ensure_ascii=False)
try:
output_file.flush()
except Exception:
pass
else:
with open(output_file, "w", encoding="utf-8") as f:
json.dump(result, f, indent=2, ensure_ascii=False)
return result
if __name__ == "__main__":
# Backwards-compatible script entry point
if len(sys.argv) == 3:
input_docx = sys.argv[1]
output_json = sys.argv[2]
try:
doc = Document(input_docx)
word_data = extract_red_text(doc)
with open(output_json, 'w', encoding='utf-8') as f:
json.dump(word_data, f, indent=2, ensure_ascii=False)
print(json.dumps(word_data, indent=2, ensure_ascii=False))
except Exception as e:
print("Error during extraction:", e)
raise
else:
print("To use as a module: extract_red_text_filelike(input_file, output_file)") |