File size: 23,576 Bytes
e8b46b5
24ad2d2
 
 
1055fe1
 
 
f4b6b63
e8b46b5
 
24ad2d2
f4b6b63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a2fc08
 
f4b6b63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a2fc08
e8b46b5
1055fe1
f4b6b63
1055fe1
 
 
 
 
f4b6b63
1055fe1
 
f4b6b63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a2fc08
f4b6b63
7a2fc08
f4b6b63
 
 
 
7a2fc08
 
 
 
 
f4b6b63
 
 
7a2fc08
f4b6b63
 
 
 
 
 
 
7a2fc08
 
e8b46b5
f4b6b63
7a2fc08
f4b6b63
 
7a2fc08
1055fe1
 
24ad2d2
f4b6b63
 
 
1487325
f4b6b63
 
1487325
24ad2d2
f4b6b63
1487325
24ad2d2
f4b6b63
24ad2d2
f4b6b63
 
1487325
f4b6b63
24ad2d2
f4b6b63
 
 
7a2fc08
f4b6b63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1055fe1
f4b6b63
24ad2d2
f4b6b63
 
 
 
 
1055fe1
f4b6b63
 
 
 
 
 
1055fe1
24ad2d2
f4b6b63
c4e2e43
7a2fc08
c4e2e43
 
f4b6b63
c4e2e43
 
1487325
f4b6b63
c4e2e43
1487325
c4e2e43
24ad2d2
f4b6b63
1055fe1
7a2fc08
1055fe1
 
f4b6b63
1055fe1
 
7a2fc08
f4b6b63
24ad2d2
f4b6b63
1055fe1
7a2fc08
f4b6b63
 
1055fe1
f4b6b63
 
 
 
 
 
 
 
 
 
1055fe1
f4b6b63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24ad2d2
1055fe1
 
f4b6b63
1055fe1
f4b6b63
 
 
 
1055fe1
 
f4b6b63
1055fe1
f4b6b63
 
 
 
1055fe1
 
 
f4b6b63
1055fe1
 
 
 
f4b6b63
1055fe1
f4b6b63
 
 
 
1055fe1
f4b6b63
 
1055fe1
f4b6b63
 
1055fe1
 
 
 
f4b6b63
1055fe1
f4b6b63
 
 
 
1055fe1
 
 
 
 
 
f4b6b63
1055fe1
f4b6b63
1055fe1
 
f4b6b63
1055fe1
7a2fc08
1055fe1
 
 
f4b6b63
1055fe1
 
f4b6b63
1055fe1
f4b6b63
 
1055fe1
 
f4b6b63
1055fe1
 
 
 
f4b6b63
1055fe1
f4b6b63
 
 
 
 
1487325
 
7a2fc08
1487325
 
24ad2d2
1487325
f4b6b63
1487325
24ad2d2
1487325
 
 
24ad2d2
1487325
 
 
 
 
f4b6b63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1487325
f4b6b63
 
 
 
 
 
7a2fc08
 
24ad2d2
1487325
24ad2d2
f4b6b63
1487325
 
 
 
f4b6b63
 
 
 
 
 
 
 
 
 
1487325
 
 
24ad2d2
f4b6b63
24ad2d2
1055fe1
 
24ad2d2
1055fe1
 
24ad2d2
1055fe1
 
 
 
 
f4b6b63
1055fe1
f4b6b63
24ad2d2
1055fe1
e8b46b5
1055fe1
 
f4b6b63
1055fe1
 
24ad2d2
1055fe1
 
 
 
24ad2d2
1055fe1
 
 
 
 
 
 
f4b6b63
 
1055fe1
f4b6b63
 
1055fe1
 
f4b6b63
1055fe1
f4b6b63
 
 
 
 
1055fe1
 
 
 
f4b6b63
1055fe1
 
24ad2d2
1055fe1
 
f4b6b63
1055fe1
 
 
 
 
f4b6b63
 
 
 
 
1055fe1
24ad2d2
f4b6b63
1055fe1
 
f4b6b63
1055fe1
f4b6b63
1055fe1
 
f4b6b63
 
 
 
 
 
 
e8b46b5
1055fe1
 
 
 
24ad2d2
f4b6b63
1055fe1
7a2fc08
1055fe1
f4b6b63
 
 
 
 
 
24ad2d2
f4b6b63
 
1055fe1
24ad2d2
1055fe1
 
f4b6b63
 
24ad2d2
e8b46b5
 
f4b6b63
e8b46b5
 
f4b6b63
1055fe1
f4b6b63
 
 
 
 
 
 
 
1055fe1
f4b6b63
 
 
 
 
 
 
 
 
 
 
1055fe1
f4b6b63
 
1055fe1
 
f4b6b63
 
 
 
1055fe1
 
 
f4b6b63
1055fe1
 
f4b6b63
1055fe1
f4b6b63
1055fe1
 
 
f4b6b63
 
 
 
 
 
 
 
 
1055fe1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
#!/usr/bin/env python3
"""
extract_red_text.py
"""
import re
import json
import sys
from io import BytesIO
from docx import Document
from docx.oxml.ns import qn

# Import schema constants (TABLE_SCHEMAS, HEADING_PATTERNS, PARAGRAPH_PATTERNS, GLOBAL_SETTINGS)
# Ensure master_key.py is present in same dir / importable path
from master_key import TABLE_SCHEMAS, HEADING_PATTERNS, PARAGRAPH_PATTERNS, GLOBAL_SETTINGS


def is_red_font(run):
    """
    Robust detection of 'red' font in a run.
    Tries several sources:
      - python-docx run.font.color.rgb (safe-guarded)
      - raw XML rPr/w:color value (hex)
    Returns True if color appears predominantly red.
    """
    # Quick guard
    if run is None:
        return False

    # 1) Try docx high-level color API if available
    try:
        col = getattr(run.font, "color", None)
        if col is not None:
            rgb_val = getattr(col, "rgb", None)
            if rgb_val:
                # rgb_val might be an RGBColor object or a tuple/list or hex-string
                try:
                    # If it's sequence-like (tuple/list) with 3 ints
                    if isinstance(rgb_val, (tuple, list)) and len(rgb_val) == 3:
                        rr, gg, bb = rgb_val
                    else:
                        # Try string representation like 'FF0000' or 'ff0000'
                        hexstr = str(rgb_val).strip()
                        if re.fullmatch(r"[0-9A-Fa-f]{6}", hexstr):
                            rr, gg, bb = int(hexstr[0:2], 16), int(hexstr[2:4], 16), int(hexstr[4:6], 16)
                        else:
                            # unknown format - fall through to XML check
                            rr = gg = bb = None
                    if rr is not None:
                        # Heuristic thresholds for 'red-ish'
                        if rr > 150 and gg < 120 and bb < 120 and (rr - gg) > 30 and (rr - bb) > 30:
                            return True
                except Exception:
                    # fall back to rPr introspection below
                    pass
    except Exception:
        # ignore and continue to XML method
        pass

    # 2) Inspect raw XML run properties for <w:color w:val="RRGGBB" />
    try:
        rPr = getattr(run._element, "rPr", None)
        if rPr is not None:
            clr = rPr.find(qn('w:color'))
            if clr is not None:
                val = clr.get(qn('w:val')) or clr.get('w:val') or clr.get('val')
                if val and isinstance(val, str):
                    val = val.strip()
                    # sometimes color is provided as 'FF0000' hex or shorthand
                    if re.fullmatch(r"[0-9A-Fa-f]{6}", val):
                        rr, gg, bb = int(val[0:2], 16), int(val[2:4], 16), int(val[4:6], 16)
                        if rr > 150 and gg < 120 and bb < 120 and (rr - gg) > 30 and (rr - bb) > 30:
                            return True
    except Exception:
        pass

    return False


def _prev_para_text(tbl):
    """Return text of previous paragraph node before a given table element."""
    prev = tbl._tbl.getprevious()
    while prev is not None and not prev.tag.endswith("}p"):
        prev = prev.getprevious()
    if prev is None:
        return ""
    # gather all text nodes under the paragraph element
    return "".join(node.text for node in prev.iter() if node.tag.endswith("}t") and node.text).strip()


def normalize_text(text):
    """Normalize text for more reliable matching (collapse whitespace)."""
    if text is None:
        return ""
    return re.sub(r'\s+', ' ', text.strip())


def fuzzy_match_heading(heading, patterns):
    """
    Attempt fuzzy matching of heading against regex patterns.
    patterns is a list of pattern dicts or strings.
    """
    heading_norm = normalize_text(heading.upper())
    for p in patterns:
        if isinstance(p, dict):
            pat = p.get("text", "")
        else:
            pat = p
        try:
            if re.search(pat, heading_norm, re.IGNORECASE):
                return True
        except re.error:
            # treat as plain substring fallback
            if pat and pat.upper() in heading_norm:
                return True
    return False


def get_table_context(tbl):
    """Return context metadata for a table to aid schema matching."""
    heading = normalize_text(_prev_para_text(tbl))
    headers = []
    if tbl.rows:
        # collect header text of first row, keeping cell order
        headers = [normalize_text(c.text) for c in tbl.rows[0].cells]
    col0 = [normalize_text(r.cells[0].text) for r in tbl.rows if r.cells and r.cells[0].text.strip()]
    first_cell = normalize_text(tbl.rows[0].cells[0].text) if tbl.rows else ""
    all_cells = []
    for row in tbl.rows:
        for cell in row.cells:
            text = normalize_text(cell.text)
            if text:
                all_cells.append(text)
    return {
        'heading': heading,
        'headers': headers,
        'col0': col0,
        'first_cell': first_cell,
        'all_cells': all_cells,
        'num_rows': len(tbl.rows),
        'num_cols': len(tbl.rows[0].cells) if tbl.rows else 0
    }


def calculate_schema_match_score(schema_name, spec, context):
    """
    Return (score, reasons[]) for how well a table context matches a schema.
    Heuristic-based scoring; vehicle registration and 'DETAILS' summary boosts added.
    """
    score = 0
    reasons = []

    table_text = " ".join(context.get('headers', [])).lower() + " " + context.get('heading', "").lower()

    # Vehicle Registration specific boost
    if "Vehicle Registration" in schema_name:
        vehicle_keywords = ["registration", "vehicle", "sub-contractor", "weight verification", "rfs suspension", "roadworthiness"]
        keyword_matches = sum(1 for kw in vehicle_keywords if kw in table_text)
        if keyword_matches >= 2:
            score += 150
            reasons.append(f"Vehicle keywords matched: {keyword_matches}")
        elif keyword_matches >= 1:
            score += 75
            reasons.append(f"Some vehicle keywords matched: {keyword_matches}")

    # Summary DETAILS boost
    if "Summary" in schema_name and "details" in table_text:
        score += 100
        reasons.append("Summary with DETAILS found")

    if "Summary" not in schema_name and "details" in table_text:
        score -= 75
        reasons.append("Non-summary schema penalized due to DETAILS column presence")

    # Context exclusions
    for exclusion in spec.get("context_exclusions", []):
        if exclusion.lower() in table_text:
            score -= 50
            reasons.append(f"Context exclusion: {exclusion}")

    # Context keywords positive matches
    kw_count = 0
    for kw in spec.get("context_keywords", []):
        if kw.lower() in table_text:
            kw_count += 1
    if kw_count:
        score += kw_count * 15
        reasons.append(f"Context keywords matched: {kw_count}")

    # First-cell exact match
    if context.get('first_cell') and context['first_cell'].upper() == schema_name.upper():
        score += 100
        reasons.append("Exact first cell match")

    # Heading pattern match
    for h in spec.get("headings", []) or []:
        pat = h.get("text") if isinstance(h, dict) and h.get("text") else h
        try:
            if pat and re.search(pat, context.get('heading', ""), re.IGNORECASE):
                score += 50
                reasons.append(f"Heading regex matched: {pat}")
                break
        except re.error:
            if pat and pat.lower() in context.get('heading', "").lower():
                score += 50
                reasons.append(f"Heading substring matched: {pat}")
                break

    # Column header matching (strict)
    if spec.get("columns"):
        cols = [normalize_text(c) for c in spec["columns"]]
        matches = 0
        for col in cols:
            if any(col.upper() in h.upper() for h in context.get('headers', [])):
                matches += 1
        if matches == len(cols):
            score += 60
            reasons.append("All expected columns matched exactly")
        elif matches > 0:
            score += matches * 20
            reasons.append(f"Partial column matches: {matches}/{len(cols)}")

    # Label matching for left-oriented tables
    if spec.get("orientation") == "left":
        labels = [normalize_text(lbl) for lbl in spec.get("labels", [])]
        matches = 0
        for lbl in labels:
            if any(lbl.upper() in c.upper() or c.upper() in lbl.upper() for c in context.get('col0', [])):
                matches += 1
        if matches > 0:
            score += (matches / max(1, len(labels))) * 30
            reasons.append(f"Left-orientation label matches: {matches}/{len(labels)}")

    # Row1 (header row) flexible matching
    elif spec.get("orientation") == "row1":
        labels = [normalize_text(lbl) for lbl in spec.get("labels", [])]
        matches = 0.0
        header_texts = " ".join(context.get('headers', [])).upper()
        for lbl in labels:
            label_upper = lbl.upper()
            # exact in any header
            if any(label_upper in h.upper() for h in context.get('headers', [])):
                matches += 1.0
            else:
                # partial words from label in header_texts
                for word in label_upper.split():
                    if len(word) > 3 and word in header_texts:
                        matches += 0.5
                        break
        if matches > 0:
            score += (matches / max(1.0, len(labels))) * 40
            reasons.append(f"Row1 header-like matches: {matches}/{len(labels)}")

    # Special handling for declaration schemas
    if schema_name == "Operator Declaration":
        # boost if 'print name' first cell and heading indicates operator declaration
        if context.get('first_cell', "").upper().startswith("PRINT"):
            if "OPERATOR DECLARATION" in context.get('heading', "").upper():
                score += 80
                reasons.append("Operator Declaration context & first-cell indicate match")
            elif any("MANAGER" in c.upper() for c in context.get('all_cells', [])):
                score += 60
                reasons.append("Manager found in cells for Operator Declaration")

    if schema_name == "NHVAS Approved Auditor Declaration":
        if context.get('first_cell', "").upper().startswith("PRINT"):
            # penalize where manager words appear (to reduce false positives)
            if any("MANAGER" in c.upper() for c in context.get('all_cells', [])):
                score -= 50
                reasons.append("Penalty: found manager text in auditor declaration table")

    return score, reasons


def match_table_schema(tbl):
    """
    Iterate TABLE_SCHEMAS and pick best match by score threshold.
    Returns schema name or None when below threshold.
    """
    context = get_table_context(tbl)
    best_match = None
    best_score = float("-inf")
    for name, spec in TABLE_SCHEMAS.items():
        try:
            score, reasons = calculate_schema_match_score(name, spec, context)
        except Exception:
            score, reasons = 0, ["error computing score"]
        if score > best_score:
            best_score = score
            best_match = name
    # threshold to avoid spurious picks
    if best_score >= 20:
        return best_match
    return None


def check_multi_schema_table(tbl):
    """
    Identify tables that contain multiple logical schemas (e.g., Operator Information + Contact Details)
    Return list of schema names if multi, else None.
    """
    context = get_table_context(tbl)
    operator_labels = ["Operator name (Legal entity)", "NHVAS Accreditation No.", "Registered trading name/s",
                       "Australian Company Number", "NHVAS Manual"]
    contact_labels = ["Operator business address", "Operator Postal address", "Email address", "Operator Telephone Number"]
    has_operator = any(any(op_lbl.upper() in cell.upper() for op_lbl in operator_labels) for cell in context.get('col0', []))
    has_contact = any(any(cont_lbl.upper() in cell.upper() for cont_lbl in contact_labels) for cell in context.get('col0', []))
    if has_operator and has_contact:
        return ["Operator Information", "Operator contact details"]
    return None


def extract_multi_schema_table(tbl, schemas):
    """
    For tables that embed multiple schema sections vertically (left orientation), split and extract.
    Returns a dict mapping schema_name -> {label: [values,...]}
    """
    result = {}
    for schema_name in schemas:
        if schema_name not in TABLE_SCHEMAS:
            continue
        spec = TABLE_SCHEMAS[schema_name]
        schema_data = {}
        # iterate rows and match the left-most cell against spec labels
        for ri, row in enumerate(tbl.rows):
            if not row.cells:
                continue
            row_label = normalize_text(row.cells[0].text)
            belongs = False
            matched_label = None
            for spec_label in spec.get("labels", []):
                spec_norm = normalize_text(spec_label).upper()
                row_norm = row_label.upper()
                if spec_norm == row_norm or spec_norm in row_norm or row_norm in spec_norm:
                    belongs = True
                    matched_label = spec_label
                    break
            if not belongs:
                continue
            # gather red-text from the row's value cells (all others)
            for ci, cell in enumerate(row.cells[1:], start=1):
                red_txt = "".join(run.text for p in cell.paragraphs for run in p.runs if is_red_font(run)).strip()
                if red_txt:
                    schema_data.setdefault(matched_label, []).append(red_txt)
        if schema_data:
            result[schema_name] = schema_data
    return result


def extract_table_data(tbl, schema_name, spec):
    """
    Extract red text from a table for a given schema.
    Special handling for Vehicle Registration (row1 header orientation).
    """
    # Vehicle Registration special-case (headers in first row)
    if "Vehicle Registration" in schema_name:
        print(f"    πŸš— EXTRACTION FIX: Processing Vehicle Registration table")
        labels = spec.get("labels", [])
        collected = {lbl: [] for lbl in labels}
        seen = {lbl: set() for lbl in labels}

        if len(tbl.rows) < 2:
            print("    ❌ Vehicle table has less than 2 rows; skipping")
            return {}

        header_row = tbl.rows[0]
        column_mapping = {}
        print(f"    πŸ“‹ Mapping {len(header_row.cells)} header cells to labels")

        for col_idx, cell in enumerate(header_row.cells):
            header_text = normalize_text(cell.text).strip()
            if not header_text:
                continue
            print(f"      Column {col_idx}: '{header_text}'")
            best_match = None
            best_score = 0.0

            for label in labels:
                # exact match
                if header_text.upper() == label.upper():
                    best_match = label
                    best_score = 1.0
                    break

                # partial token overlap scoring
                header_words = set(word.upper() for word in header_text.split() if len(word) > 2)
                label_words = set(word.upper() for word in label.split() if len(word) > 2)
                if header_words and label_words:
                    common = header_words.intersection(label_words)
                    if common:
                        score = len(common) / max(len(header_words), len(label_words))
                        if score > best_score and score >= 0.35:  # relaxed threshold for OCR noise
                            best_score = score
                            best_match = label

            if best_match:
                column_mapping[col_idx] = best_match
                print(f"        βœ… Mapped to: '{best_match}' (score: {best_score:.2f})")
            else:
                # additional heuristics: simple substring matches
                for label in labels:
                    if label.lower() in header_text.lower() or header_text.lower() in label.lower():
                        column_mapping[col_idx] = label
                        print(f"        βœ… Mapped by substring to: '{label}'")
                        break
                else:
                    print(f"        ⚠️ No mapping found for '{header_text}'")

        print(f"    πŸ“Š Total column mappings: {len(column_mapping)}")

        # Extract data rows
        for row_idx in range(1, len(tbl.rows)):
            row = tbl.rows[row_idx]
            print(f"      πŸ“Œ Processing data row {row_idx}")
            for col_idx, cell in enumerate(row.cells):
                if col_idx not in column_mapping:
                    continue
                label = column_mapping[col_idx]
                red_txt = "".join(run.text for p in cell.paragraphs for run in p.runs if is_red_font(run)).strip()
                if red_txt:
                    print(f"        πŸ”΄ Found red text in '{label}': '{red_txt}'")
                    if red_txt not in seen[label]:
                        seen[label].add(red_txt)
                        collected[label].append(red_txt)

        result = {k: v for k, v in collected.items() if v}
        print(f"    βœ… Vehicle Registration extracted: {len(result)} columns with data")
        return result

    # Generic extraction for other table types
    labels = spec.get("labels", []) + [schema_name]
    collected = {lbl: [] for lbl in labels}
    seen = {lbl: set() for lbl in labels}
    by_col = (spec.get("orientation") == "row1")
    start_row = 1 if by_col else 0
    rows = tbl.rows[start_row:]

    for ri, row in enumerate(rows):
        for ci, cell in enumerate(row.cells):
            red_txt = "".join(run.text for p in cell.paragraphs for run in p.runs if is_red_font(run)).strip()
            if not red_txt:
                continue

            if by_col:
                # column-wise mapping (header labels)
                if ci < len(spec.get("labels", [])):
                    lbl = spec["labels"][ci]
                else:
                    lbl = schema_name
            else:
                # left-oriented: match left label
                raw_label = normalize_text(row.cells[0].text)
                lbl = None
                for spec_label in spec.get("labels", []):
                    if normalize_text(spec_label).upper() == raw_label.upper():
                        lbl = spec_label
                        break
                if not lbl:
                    for spec_label in spec.get("labels", []):
                        spec_norm = normalize_text(spec_label).upper()
                        raw_norm = raw_label.upper()
                        if spec_norm in raw_norm or raw_norm in spec_norm:
                            lbl = spec_label
                            break
                if not lbl:
                    lbl = schema_name

            if red_txt not in seen[lbl]:
                seen[lbl].add(red_txt)
                collected[lbl].append(red_txt)

    return {k: v for k, v in collected.items() if v}


def extract_red_text(input_doc):
    """
    Main extraction function.
    Accepts a docx.Document object or a path string (filename).
    Returns dictionary of extracted red-text organized by schema.
    """
    if isinstance(input_doc, str):
        doc = Document(input_doc)
    else:
        doc = input_doc

    out = {}
    table_count = 0

    for tbl in doc.tables:
        table_count += 1
        # Check for multi-schema tables first
        multi_schemas = check_multi_schema_table(tbl)
        if multi_schemas:
            multi_data = extract_multi_schema_table(tbl, multi_schemas)
            for schema_name, schema_data in multi_data.items():
                if schema_data:
                    if schema_name in out:
                        for k, v in schema_data.items():
                            out[schema_name].setdefault(k, []).extend(v)
                    else:
                        out[schema_name] = schema_data
            continue

        # match a single schema
        schema = match_table_schema(tbl)
        if not schema:
            # no confident schema match
            continue
        spec = TABLE_SCHEMAS.get(schema, {})
        data = extract_table_data(tbl, schema, spec)
        if data:
            if schema in out:
                for k, v in data.items():
                    out[schema].setdefault(k, []).extend(v)
            else:
                out[schema] = data

    # Paragraph-level red-text extraction (with contextual heading resolution)
    paras = {}
    for idx, para in enumerate(doc.paragraphs):
        red_txt = "".join(r.text for r in para.runs if is_red_font(r)).strip()
        if not red_txt:
            continue

        # attempt to find nearest preceding heading paragraph (using HEADING_PATTERNS)
        context = None
        for j in range(idx - 1, -1, -1):
            txt = normalize_text(doc.paragraphs[j].text)
            if not txt:
                continue
            all_patterns = HEADING_PATTERNS.get("main", []) + HEADING_PATTERNS.get("sub", [])
            if any(re.search(p, txt, re.IGNORECASE) for p in all_patterns):
                context = txt
                break

        # fallback: date-line mapping for 'Date' single-line red texts
        if not context and re.fullmatch(PARAGRAPH_PATTERNS.get("date_line", r"^\s*\d{1,2}(?:st|nd|rd|th)?\s+[A-Za-z]+\s+\d{4}\s*$|^Date$"), red_txt):
            context = "Date"

        if not context:
            context = "(para)"

        paras.setdefault(context, []).append(red_txt)

    if paras:
        out["paragraphs"] = paras

    return out


def extract_red_text_filelike(input_file, output_file):
    """
    Accepts:
      - input_file: file-like object (BytesIO/File) or path
      - output_file: file-like object (opened for writing text) or path
    Returns the parsed dictionary.
    Writes the JSON to output_file if possible.
    """
    # Reset file-like if necessary
    if hasattr(input_file, "seek"):
        try:
            input_file.seek(0)
        except Exception:
            pass

    # Load Document
    if isinstance(input_file, (str, bytes)):
        doc = Document(input_file)
    else:
        doc = Document(input_file)

    result = extract_red_text(doc)

    # Write result out
    if hasattr(output_file, "write"):
        json.dump(result, output_file, indent=2, ensure_ascii=False)
        try:
            output_file.flush()
        except Exception:
            pass
    else:
        with open(output_file, "w", encoding="utf-8") as f:
            json.dump(result, f, indent=2, ensure_ascii=False)

    return result


if __name__ == "__main__":
    # Backwards-compatible script entry point
    if len(sys.argv) == 3:
        input_docx = sys.argv[1]
        output_json = sys.argv[2]
        try:
            doc = Document(input_docx)
            word_data = extract_red_text(doc)
            with open(output_json, 'w', encoding='utf-8') as f:
                json.dump(word_data, f, indent=2, ensure_ascii=False)
            print(json.dumps(word_data, indent=2, ensure_ascii=False))
        except Exception as e:
            print("Error during extraction:", e)
            raise
    else:
        print("To use as a module: extract_red_text_filelike(input_file, output_file)")