File size: 66,441 Bytes
da7e8af
 
 
 
 
 
 
 
 
 
 
 
e8b46b5
 
 
 
da7e8af
e8b46b5
b93e8d9
c38c9d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b93e8d9
 
 
 
e8b46b5
da7e8af
e8b46b5
 
c38c9d4
 
 
 
 
 
 
 
 
 
e8b46b5
 
 
da7e8af
 
 
 
 
 
e8b46b5
 
 
 
 
 
 
 
 
c38c9d4
e8b46b5
 
 
 
 
b93e8d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8b46b5
b93e8d9
da7e8af
 
 
 
c38c9d4
e8b46b5
5b2b3a8
e8b46b5
da7e8af
c38c9d4
e8b46b5
 
5b2b3a8
e8b46b5
da7e8af
 
c38c9d4
 
 
da7e8af
c38c9d4
 
 
 
 
 
da7e8af
c38c9d4
 
 
 
 
da7e8af
 
c38c9d4
 
 
 
 
 
 
 
da7e8af
c38c9d4
e8b46b5
5b2b3a8
 
da7e8af
e8b46b5
 
5b2b3a8
da7e8af
e8b46b5
 
5b2b3a8
 
da7e8af
 
e8b46b5
 
5b2b3a8
 
 
da7e8af
5b2b3a8
 
 
 
da7e8af
412e2ed
5b2b3a8
 
da7e8af
e8b46b5
 
 
b93e8d9
 
 
e8b46b5
c38c9d4
b93e8d9
c38c9d4
da7e8af
c38c9d4
 
 
da7e8af
c38c9d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da7e8af
c38c9d4
 
 
 
 
 
 
da7e8af
c38c9d4
 
 
b93e8d9
c38c9d4
 
da7e8af
c38c9d4
 
 
 
da7e8af
5b2b3a8
da7e8af
c38c9d4
 
 
 
 
 
 
da7e8af
c38c9d4
 
da7e8af
c38c9d4
 
 
da7e8af
c38c9d4
 
 
 
da7e8af
 
 
c38c9d4
 
 
 
da7e8af
c38c9d4
 
da7e8af
c38c9d4
 
 
 
da7e8af
5b2b3a8
 
c38c9d4
b93e8d9
c38c9d4
 
da7e8af
c38c9d4
 
 
da7e8af
c38c9d4
 
da7e8af
c38c9d4
 
b93e8d9
 
c38c9d4
da7e8af
c38c9d4
 
da7e8af
b93e8d9
5efc8a5
b93e8d9
 
 
c38c9d4
 
b93e8d9
c38c9d4
 
 
 
 
 
 
 
 
 
 
 
b93e8d9
c38c9d4
da7e8af
c38c9d4
 
da7e8af
c38c9d4
 
 
 
 
 
da7e8af
c38c9d4
 
 
da7e8af
c38c9d4
 
 
 
 
da7e8af
c38c9d4
 
 
 
 
 
da7e8af
c38c9d4
da7e8af
c38c9d4
 
 
da7e8af
c38c9d4
 
 
 
 
 
da7e8af
c38c9d4
 
 
da7e8af
c38c9d4
da7e8af
 
c38c9d4
 
 
 
 
da7e8af
c38c9d4
 
da7e8af
c38c9d4
da7e8af
c38c9d4
 
da7e8af
c38c9d4
 
 
 
da7e8af
c38c9d4
 
da7e8af
c38c9d4
 
 
da7e8af
c38c9d4
 
 
da7e8af
c38c9d4
 
da7e8af
c38c9d4
 
 
 
 
 
da7e8af
c38c9d4
 
 
da7e8af
c38c9d4
 
 
da7e8af
c38c9d4
 
 
 
 
da7e8af
c38c9d4
da7e8af
c38c9d4
 
 
da7e8af
c38c9d4
 
 
da7e8af
c38c9d4
 
da7e8af
c38c9d4
 
da7e8af
c38c9d4
 
 
da7e8af
c38c9d4
 
 
da7e8af
c38c9d4
 
 
 
 
 
 
 
 
 
 
da7e8af
c38c9d4
 
076f0d9
 
8df4ecc
da7e8af
076f0d9
 
 
 
 
 
da7e8af
076f0d9
 
da7e8af
076f0d9
 
 
da7e8af
076f0d9
 
 
 
 
da7e8af
076f0d9
 
da7e8af
076f0d9
 
da7e8af
b93e8d9
076f0d9
22b9cc9
76ff551
076f0d9
 
76ff551
076f0d9
da7e8af
22b9cc9
da7e8af
22b9cc9
 
 
 
76ff551
076f0d9
da7e8af
076f0d9
 
 
da7e8af
b93e8d9
76ff551
da7e8af
22b9cc9
da7e8af
22b9cc9
 
 
 
da7e8af
22b9cc9
 
 
 
 
 
da7e8af
22b9cc9
da7e8af
22b9cc9
 
 
 
 
 
da7e8af
22b9cc9
76ff551
da7e8af
2c767ad
76ff551
2c767ad
 
da7e8af
b93e8d9
54d9a7f
428b626
da7e8af
428b626
2c767ad
428b626
a5282db
428b626
da7e8af
428b626
 
 
da7e8af
b93e8d9
 
 
2c767ad
da7e8af
b93e8d9
2c767ad
da7e8af
8df4ecc
 
3894cf3
 
 
da7e8af
b93e8d9
da7e8af
3894cf3
 
 
 
 
da7e8af
3894cf3
 
da7e8af
3894cf3
da7e8af
3894cf3
 
 
 
 
da7e8af
3894cf3
da7e8af
3894cf3
 
 
 
da7e8af
3894cf3
 
 
 
 
 
da7e8af
3894cf3
 
 
da7e8af
3894cf3
 
 
 
 
 
da7e8af
b93e8d9
3894cf3
da7e8af
 
 
 
3894cf3
61e7c5d
1f4d3cf
 
 
 
61e7c5d
3894cf3
da7e8af
c0e794c
da7e8af
3894cf3
 
 
 
 
da7e8af
3894cf3
 
da7e8af
3894cf3
da7e8af
61e7c5d
 
 
 
 
1f4d3cf
61e7c5d
 
 
 
 
1f4d3cf
61e7c5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f4d3cf
61e7c5d
1f4d3cf
 
 
 
 
 
61e7c5d
1f4d3cf
61e7c5d
 
1f4d3cf
3894cf3
 
 
 
da7e8af
3894cf3
 
da7e8af
3894cf3
 
 
 
 
da7e8af
3894cf3
 
 
da7e8af
1f4d3cf
4451af2
da7e8af
 
61e7c5d
4451af2
da7e8af
 
61e7c5d
1f4d3cf
61e7c5d
 
 
1f4d3cf
61e7c5d
 
 
 
 
 
 
 
1f4d3cf
61e7c5d
 
 
 
 
 
 
1f4d3cf
61e7c5d
 
 
 
 
 
 
 
 
 
1f4d3cf
61e7c5d
 
 
 
 
 
 
1f4d3cf
61e7c5d
 
 
 
 
 
 
 
1f4d3cf
61e7c5d
 
 
 
 
 
 
da7e8af
c0e794c
da7e8af
1f4d3cf
da7e8af
 
 
 
 
 
 
c0e794c
 
 
 
 
da7e8af
c0e794c
 
 
da7e8af
c0e794c
 
 
 
 
 
 
 
 
 
da7e8af
c0e794c
 
 
 
 
da7e8af
c0e794c
 
 
 
 
 
da7e8af
c0e794c
 
 
da7e8af
c0e794c
 
 
 
 
 
 
 
 
 
da7e8af
c0e794c
 
 
 
 
da7e8af
c0e794c
 
 
 
 
 
da7e8af
c0e794c
 
 
da7e8af
c0e794c
 
da7e8af
c0e794c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4451af2
 
da7e8af
 
 
 
c0e794c
1f4d3cf
 
4e326f4
1f4d3cf
c0e794c
da7e8af
1f4d3cf
da7e8af
 
 
 
4e326f4
1f4d3cf
450ea05
da7e8af
1f4d3cf
 
 
 
 
 
da7e8af
4e326f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f4d3cf
 
da7e8af
c0e794c
 
4e326f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0e794c
4e326f4
 
 
 
 
 
 
 
 
 
 
 
 
 
c0e794c
4e326f4
 
 
 
 
 
 
 
 
 
 
 
 
 
da7e8af
1f4d3cf
 
 
 
 
 
 
 
c0e794c
 
 
450ea05
c0e794c
da7e8af
 
 
 
 
 
 
450ea05
 
 
 
 
da7e8af
450ea05
 
 
 
da7e8af
c0e794c
da7e8af
c0e794c
 
 
 
 
 
da7e8af
 
c0e794c
da7e8af
c0e794c
 
 
 
 
 
 
 
 
 
da7e8af
c0e794c
 
 
 
 
da7e8af
c0e794c
 
 
 
 
 
da7e8af
c0e794c
 
 
 
 
 
da7e8af
c0e794c
 
 
 
 
 
da7e8af
3894cf3
 
da7e8af
 
 
 
e8b46b5
c0e794c
e8b46b5
da7e8af
e8b46b5
 
da7e8af
c0e794c
c38c9d4
 
 
 
364a368
c0e794c
364a368
 
 
da7e8af
364a368
 
3894cf3
 
da7e8af
c0e794c
ae4477c
 
 
 
d4200b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da7e8af
d4200b4
 
 
da7e8af
364a368
 
da7e8af
c0e794c
c38c9d4
 
 
 
 
 
 
da7e8af
c0e794c
8df4ecc
 
076f0d9
8df4ecc
 
da7e8af
 
c38c9d4
 
da7e8af
 
 
 
 
 
 
 
 
 
 
 
 
 
c38c9d4
da7e8af
 
e8b46b5
7755a4a
e8b46b5
da7e8af
e8b46b5
 
da7e8af
e8b46b5
 
da7e8af
e8b46b5
da7e8af
e8b46b5
da7e8af
e8b46b5
 
da7e8af
c0e794c
e8b46b5
 
 
da7e8af
c0e794c
c38c9d4
c0e794c
c38c9d4
da7e8af
c38c9d4
e8b46b5
c38c9d4
 
 
e8b46b5
 
 
c0e794c
da7e8af
c0e794c
c38c9d4
 
 
 
da7e8af
c0e794c
c38c9d4
 
 
 
 
 
 
da7e8af
e8b46b5
c0e794c
c38c9d4
 
 
 
 
 
 
 
 
 
 
 
da7e8af
c0e794c
e8b46b5
 
 
c38c9d4
 
da7e8af
c0e794c
c38c9d4
 
 
da7e8af
c0e794c
8df4ecc
 
da7e8af
c0e794c
 
 
 
da7e8af
 
 
c0e794c
 
da7e8af
c0e794c
e8b46b5
 
c0e794c
e8b46b5
 
da7e8af
e8b46b5
c38c9d4
 
 
 
da7e8af
c38c9d4
da7e8af
c38c9d4
 
 
 
 
 
da7e8af
7755a4a
ddb37e5
c38c9d4
 
 
 
 
 
da7e8af
c38c9d4
 
 
c0e794c
c38c9d4
 
da7e8af
c38c9d4
da7e8af
c38c9d4
 
da7e8af
c38c9d4
 
da7e8af
c0e794c
c38c9d4
 
 
 
 
 
 
 
da7e8af
c38c9d4
 
da7e8af
c38c9d4
 
 
 
 
da7e8af
c0e794c
 
c38c9d4
 
 
da7e8af
c38c9d4
 
da7e8af
c38c9d4
 
da7e8af
c38c9d4
 
 
 
 
 
 
 
 
da7e8af
c38c9d4
 
da7e8af
c0e794c
c38c9d4
c0e794c
da7e8af
c38c9d4
da7e8af
c38c9d4
 
 
 
da7e8af
c38c9d4
 
 
c0e794c
c38c9d4
da7e8af
c38c9d4
 
 
 
da7e8af
c38c9d4
 
da7e8af
c38c9d4
 
da7e8af
c38c9d4
da7e8af
c0e794c
c38c9d4
da7e8af
c0e794c
c38c9d4
 
 
 
 
 
 
 
da7e8af
c38c9d4
 
 
 
 
 
 
da7e8af
c0e794c
c38c9d4
 
 
 
 
 
da7e8af
c38c9d4
 
 
c0e794c
c38c9d4
da7e8af
c38c9d4
 
 
da7e8af
c38c9d4
 
 
 
da7e8af
c38c9d4
 
da7e8af
c38c9d4
 
 
 
da7e8af
7755a4a
 
da7e8af
6c1e37b
5b2b3a8
c0e794c
e8b46b5
7755a4a
5b2b3a8
 
 
 
 
da7e8af
c38c9d4
e8b46b5
5b2b3a8
 
e8b46b5
5b2b3a8
e8b46b5
7755a4a
5b2b3a8
 
 
 
e8b46b5
c0e794c
 
da7e8af
e8b46b5
 
c38c9d4
da7e8af
c0e794c
d4d9e3e
da7e8af
b0b008f
 
e8b46b5
7755a4a
5b2b3a8
 
 
 
da7e8af
5b2b3a8
7755a4a
 
 
c38c9d4
1f4d3cf
412e2ed
e8b46b5
 
 
 
 
 
 
 
a6e31ac
 
 
c38c9d4
a6e31ac
 
 
 
7755a4a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
#!/usr/bin/env python3
"""
Updated pipeline.py
Merged improvements:
 - removed duplicate functions
 - table processed-marker to avoid multiple handlers clobbering the same table
 - stricter detection of print-accreditation/operator-declaration tables
 - safer force replacement (avoid short->long mapping)
 - prefer exact qualified keys for Print Name / Position Title lookups
 - preserved all other logic and prints/logging
"""

import json
from docx import Document
from docx.shared import RGBColor
import re
from typing import Any

# Heading patterns for document structure detection
HEADING_PATTERNS = {
    "main": [
        r"NHVAS\s+Audit\s+Summary\s+Report",
        r"NATIONAL\s+HEAVY\s+VEHICLE\s+ACCREDITATION\s+AUDIT\s+SUMMARY\s+REPORT",
        r"NHVAS\s+AUDIT\s+SUMMARY\s+REPORT"
    ],
    "sub": [
        r"AUDIT\s+OBSERVATIONS\s+AND\s+COMMENTS",
        r"MAINTENANCE\s+MANAGEMENT",
        r"MASS\s+MANAGEMENT",
        r"FATIGUE\s+MANAGEMENT",
        r"Fatigue\s+Management\s+Summary\s+of\s+Audit\s+findings",
        r"MAINTENANCE\s+MANAGEMENT\s+SUMMARY\s+OF\s+AUDIT\s+FINDINGS",
        r"MASS\s+MANAGEMENT\s+SUMMARY\s+OF\s+AUDIT\s+FINDINGS",
        r"Vehicle\s+Registration\s+Numbers\s+of\s+Records\s+Examined",
        r"CORRECTIVE\s+ACTION\s+REQUEST\s+\(CAR\)",
        r"NHVAS\s+APPROVED\s+AUDITOR\s+DECLARATION",
        r"Operator\s+Declaration",
        r"Operator\s+Information",
        r"Driver\s*/\s*Scheduler\s+Records\s+Examined"
    ]
}

# ============================================================================
# UTILITY FUNCTIONS
# ============================================================================

def load_json(filepath):
    with open(filepath, 'r', encoding='utf-8') as file:
        return json.load(file)

def flatten_json(y, prefix=''):
    out = {}
    for key, val in y.items():
        new_key = f"{prefix}.{key}" if prefix else key
        if isinstance(val, dict):
            out.update(flatten_json(val, new_key))
        else:
            out[new_key] = val
            out[key] = val
    return out

def is_red(run):
    color = run.font.color
    # safe checks, handle theme_color fallback as before
    try:
        return color and (getattr(color, "rgb", None) and color.rgb == RGBColor(255, 0, 0) or getattr(color, "theme_color", None) == 1)
    except Exception:
        # best-effort: If object doesn't match expected shape, return False
        return False

def get_value_as_string(value, field_name=""):
    if isinstance(value, list):
        if len(value) == 0:
            return ""
        elif len(value) == 1:
            return str(value[0])
        else:
            if "australian company number" in field_name.lower() or "company number" in field_name.lower():
                return value
            else:
                return " ".join(str(v) for v in value)
    else:
        return str(value)

def get_clean_text(cell):
    text = ""
    for paragraph in cell.paragraphs:
        for run in paragraph.runs:
            text += run.text
    return text.strip()

def has_red_text(cell):
    for paragraph in cell.paragraphs:
        for run in paragraph.runs:
            if is_red(run) and run.text.strip():
                return True
    return False

def has_red_text_in_paragraph(paragraph):
    for run in paragraph.runs:
        if is_red(run) and run.text.strip():
            return True
    return False

# ============================================================================
# JSON MATCHING FUNCTIONS
# ============================================================================

def find_matching_json_value(field_name, flat_json):
    """Find matching value in JSON with multiple strategies"""
    field_name = (field_name or "").strip()
    if not field_name:
        return None

    # Try exact match first
    if field_name in flat_json:
        print(f"    βœ… Direct match found for key '{field_name}'")
        return flat_json[field_name]

    # Try case-insensitive exact match
    for key, value in flat_json.items():
        if key.lower() == field_name.lower():
            print(f"    βœ… Case-insensitive match found for key '{field_name}' with JSON key '{key}'")
            return value

    # Better Print Name detection for operator vs auditor (prefer fully-qualified keys)
    if field_name.lower().strip() == "print name":
        operator_keys = [k for k in flat_json.keys() if "operator" in k.lower() and "print name" in k.lower()]
        auditor_keys = [k for k in flat_json.keys() if "auditor" in k.lower() and ("print name" in k.lower() or "name" in k.lower())]

        if operator_keys:
            print(f"    βœ… Operator Print Name match: '{field_name}' -> '{operator_keys[0]}'")
            return flat_json[operator_keys[0]]
        elif auditor_keys:
            print(f"    βœ… Auditor Name match: '{field_name}' -> '{auditor_keys[0]}'")
            return flat_json[auditor_keys[0]]

    # Try suffix matching (for nested keys like "section.field")
    for key, value in flat_json.items():
        if '.' in key and key.split('.')[-1].lower() == field_name.lower():
            print(f"    βœ… Suffix match found for key '{field_name}' with JSON key '{key}'")
            return value

    # Clean and exact match attempt
    clean_field = re.sub(r'[^\w\s]', ' ', field_name.lower()).strip()
    clean_field = re.sub(r'\s+', ' ', clean_field)
    for key, value in flat_json.items():
        clean_key = re.sub(r'[^\w\s]', ' ', key.lower()).strip()
        clean_key = re.sub(r'\s+', ' ', clean_key)
        if clean_field == clean_key:
            print(f"    βœ… Clean match found for key '{field_name}' with JSON key '{key}'")
            return value

    # Enhanced fuzzy matching with better scoring
    field_words = set(word.lower() for word in re.findall(r'\b\w+\b', field_name) if len(word) > 2)
    if not field_words:
        return None

    best_match = None
    best_score = 0
    best_key = None

    for key, value in flat_json.items():
        key_words = set(word.lower() for word in re.findall(r'\b\w+\b', key) if len(word) > 2)
        if not key_words:
            continue

        # Calculate similarity score: Jaccard + coverage
        common_words = field_words.intersection(key_words)
        if common_words:
            similarity = len(common_words) / len(field_words.union(key_words))
            coverage = len(common_words) / len(field_words)
            final_score = (similarity * 0.6) + (coverage * 0.4)

            if final_score > best_score:
                best_score = final_score
                best_match = value
                best_key = key

    if best_match and best_score >= 0.25:
        print(f"    βœ… Fuzzy match found for key '{field_name}' with JSON key '{best_key}' (score: {best_score:.2f})")
        return best_match

    print(f"    ❌ No match found for '{field_name}'")
    return None

# ============================================================================
# RED TEXT PROCESSING FUNCTIONS
# ============================================================================

def extract_red_text_segments(cell):
    """Extract red text segments from a cell"""
    red_segments = []

    for para_idx, paragraph in enumerate(cell.paragraphs):
        current_segment = ""
        segment_runs = []

        for run_idx, run in enumerate(paragraph.runs):
            if is_red(run):
                if run.text:
                    current_segment += run.text
                segment_runs.append((para_idx, run_idx, run))
            else:
                # End of current red segment
                if segment_runs:
                    red_segments.append({
                        'text': current_segment,
                        'runs': segment_runs.copy(),
                        'paragraph_idx': para_idx
                    })
                    current_segment = ""
                    segment_runs = []

        # Handle segment at end of paragraph
        if segment_runs:
            red_segments.append({
                'text': current_segment,
                'runs': segment_runs.copy(),
                'paragraph_idx': para_idx
            })

    return red_segments

def replace_all_red_segments(red_segments, replacement_text):
    """Replace all red segments with replacement text"""
    if not red_segments:
        return 0

    if '\n' in replacement_text:
        replacement_lines = replacement_text.split('\n')
    else:
        replacement_lines = [replacement_text]

    replacements_made = 0

    if red_segments and replacement_lines:
        first_segment = red_segments[0]
        if first_segment['runs']:
            first_run = first_segment['runs'][0][2]
            first_run.text = replacement_lines[0]
            first_run.font.color.rgb = RGBColor(0, 0, 0)
            replacements_made = 1

            for _, _, run in first_segment['runs'][1:]:
                run.text = ''

    for segment in red_segments[1:]:
        for _, _, run in segment['runs']:
            run.text = ''

    if len(replacement_lines) > 1 and red_segments:
        try:
            first_run = red_segments[0]['runs'][0][2]
            paragraph = first_run.element.getparent()
            # Add line breaks + new runs (best-effort)
            from docx.oxml import OxmlElement
            parent = first_run.element.getparent()
            for line in replacement_lines[1:]:
                if line.strip():
                    br = OxmlElement('w:br')
                    first_run.element.append(br)
                    # create a new run in the same paragraph node (docx high-level API)
                    new_run = paragraph.add_run(line.strip())
                    new_run.font.color.rgb = RGBColor(0, 0, 0)
        except Exception:
            if red_segments and red_segments[0]['runs']:
                first_run = red_segments[0]['runs'][0][2]
                first_run.text = ' '.join(replacement_lines)
                first_run.font.color.rgb = RGBColor(0, 0, 0)

    return replacements_made

def replace_single_segment(segment, replacement_text):
    """Replace a single red text segment"""
    if not segment['runs']:
        return False

    first_run = segment['runs'][0][2]
    first_run.text = replacement_text
    first_run.font.color.rgb = RGBColor(0, 0, 0)

    for _, _, run in segment['runs'][1:]:
        run.text = ''

    return True

def replace_red_text_in_cell(cell, replacement_text):
    """Replace red text in a cell with replacement text"""
    red_segments = extract_red_text_segments(cell)

    if not red_segments:
        return 0

    return replace_all_red_segments(red_segments, replacement_text)

# ============================================================================
# SPECIALIZED TABLE HANDLERS
# ============================================================================

def handle_australian_company_number(row, company_numbers):
    """Handle Australian Company Number digit placement"""
    replacements_made = 0
    for i, digit in enumerate(company_numbers):
        cell_idx = i + 1
        if cell_idx < len(row.cells):
            cell = row.cells[cell_idx]
            if has_red_text(cell):
                cell_replacements = replace_red_text_in_cell(cell, str(digit))
                replacements_made += cell_replacements
                print(f"      -> Placed digit '{digit}' in cell {cell_idx + 1}")
    return replacements_made

def handle_vehicle_registration_table(table, flat_json):
    """Handle vehicle registration table data replacement"""
    replacements_made = 0

    # Try to find vehicle registration data
    vehicle_section = None

    for key, value in flat_json.items():
        if "vehicle registration numbers of records examined" in key.lower():
            if isinstance(value, dict):
                vehicle_section = value
                print(f"    βœ… Found vehicle data in key: '{key}'")
                break

    if not vehicle_section:
        potential_columns = {}
        for key, value in flat_json.items():
            if any(col_name in key.lower() for col_name in ["registration number", "sub-contractor", "weight verification", "rfs suspension", "trip records", "suspension"]):
                if "." in key:
                    column_name = key.split(".")[-1]
                else:
                    column_name = key
                potential_columns[column_name] = value

        if potential_columns:
            vehicle_section = potential_columns
            print(f"    βœ… Found vehicle data from flattened keys: {list(vehicle_section.keys())}")
        else:
            print(f"    ❌ Vehicle registration data not found in JSON")
            return 0

    print(f"    βœ… Found vehicle registration data with {len(vehicle_section)} columns")

    # Find header row
    header_row_idx = -1
    header_row = None

    for row_idx, row in enumerate(table.rows):
        row_text = "".join(get_clean_text(cell).lower() for cell in row.cells)
        if "registration" in row_text and "number" in row_text:
            header_row_idx = row_idx
            header_row = row
            break

    if header_row_idx == -1:
        print(f"    ❌ Could not find header row in vehicle table")
        return 0

    print(f"    βœ… Found header row at index {header_row_idx}")

    # Enhanced column mapping (same method as before)
    column_mapping = {}
    for col_idx, cell in enumerate(header_row.cells):
        header_text = get_clean_text(cell).strip()
        if not header_text or header_text.lower() == "no.":
            continue

        best_match = None
        best_score = 0

        normalized_header = header_text.lower().replace("(", " (").replace(")", ") ").strip()

        for json_key in vehicle_section.keys():
            normalized_json = json_key.lower().strip()

            if normalized_header == normalized_json:
                best_match = json_key
                best_score = 1.0
                break

            header_words = set(word.lower() for word in normalized_header.split() if len(word) > 2)
            json_words = set(word.lower() for word in normalized_json.split() if len(word) > 2)

            if header_words and json_words:
                common_words = header_words.intersection(json_words)
                score = len(common_words) / max(len(header_words), len(json_words))

                if score > best_score and score >= 0.3:
                    best_score = score
                    best_match = json_key

            header_clean = normalized_header.replace(" ", "").replace("-", "").replace("(", "").replace(")", "")
            json_clean = normalized_json.replace(" ", "").replace("-", "").replace("(", "").replace(")", "")

            if header_clean in json_clean or json_clean in header_clean:
                if len(header_clean) > 5 and len(json_clean) > 5:
                    substring_score = min(len(header_clean), len(json_clean)) / max(len(header_clean), len(json_clean))
                    if substring_score > best_score and substring_score >= 0.6:
                        best_score = substring_score
                        best_match = json_key

        if best_match:
            column_mapping[col_idx] = best_match
            print(f"      πŸ“Œ Column {col_idx + 1} ('{header_text}') -> '{best_match}' (score: {best_score:.2f})")

    if not column_mapping:
        print(f"    ❌ No column mappings found")
        return 0

    # Determine data rows needed
    max_data_rows = 0
    for json_key, data in vehicle_section.items():
        if isinstance(data, list):
            max_data_rows = max(max_data_rows, len(data))

    print(f"    πŸ“Œ Need to populate {max_data_rows} data rows")

    # Process data rows
    for data_row_index in range(max_data_rows):
        table_row_idx = header_row_idx + 1 + data_row_index

        if table_row_idx >= len(table.rows):
            print(f"    ⚠️ Row {table_row_idx + 1} doesn't exist - table only has {len(table.rows)} rows")
            print(f"    βž• Adding new row for vehicle {data_row_index + 1}")

            new_row = table.add_row()
            print(f"    βœ… Successfully added row {len(table.rows)} to the table")

        row = table.rows[table_row_idx]
        print(f"    πŸ“Œ Processing data row {table_row_idx + 1} (vehicle {data_row_index + 1})")

        for col_idx, json_key in column_mapping.items():
            if col_idx < len(row.cells):
                cell = row.cells[col_idx]

                column_data = vehicle_section.get(json_key, [])
                if isinstance(column_data, list) and data_row_index < len(column_data):
                    replacement_value = str(column_data[data_row_index])

                    cell_text = get_clean_text(cell)
                    if has_red_text(cell) or not cell_text.strip():
                        if not cell_text.strip():
                            cell.text = replacement_value
                            replacements_made += 1
                            print(f"      -> Added '{replacement_value}' to empty cell (column '{json_key}')")
                        else:
                            cell_replacements = replace_red_text_in_cell(cell, replacement_value)
                            replacements_made += cell_replacements
                            if cell_replacements > 0:
                                print(f"      -> Replaced red text with '{replacement_value}' (column '{json_key}')")

    return replacements_made

def handle_attendance_list_table_enhanced(table, flat_json):
    """Enhanced Attendance List processing with better detection"""
    replacements_made = 0

    # Check multiple patterns for attendance list
    attendance_patterns = [
        "attendance list",
        "names and position titles",
        "attendees"
    ]

    # Scan all cells in the first few rows for attendance list indicators
    found_attendance_row = None

    for row_idx, row in enumerate(table.rows[:3]):  # Check first 3 rows
        for cell_idx, cell in enumerate(row.cells):
            cell_text = get_clean_text(cell).lower()

            # Check if this cell contains attendance list header
            if any(pattern in cell_text for pattern in attendance_patterns):
                found_attendance_row = row_idx
                print(f"    🎯 ENHANCED: Found Attendance List in row {row_idx + 1}, cell {cell_idx + 1}")
                break

        if found_attendance_row is not None:
            break

    if found_attendance_row is None:
        return 0

    # Look for attendance data in JSON
    attendance_value = None
    attendance_search_keys = [
        "Attendance List (Names and Position Titles).Attendance List (Names and Position Titles)",
        "Attendance List (Names and Position Titles)",
        "attendance list",
        "attendees"
    ]

    print(f"    πŸ” Searching for attendance data in JSON...")

    for search_key in attendance_search_keys:
        attendance_value = find_matching_json_value(search_key, flat_json)
        if attendance_value is not None:
            print(f"    βœ… Found attendance data with key: '{search_key}'")
            print(f"    πŸ“Š Raw value: {attendance_value}")
            break

    if attendance_value is None:
        print(f"    ❌ No attendance data found in JSON")
        return 0

    # Look for red text in ALL cells of the table
    target_cell = None

    print(f"    πŸ” Scanning ALL cells in attendance table for red text...")

    for row_idx, row in enumerate(table.rows):
        for cell_idx, cell in enumerate(row.cells):
            if has_red_text(cell):
                print(f"        🎯 Found red text in row {row_idx + 1}, cell {cell_idx + 1}")

                # Get the red text to see if it looks like attendance data
                red_text = ""
                for paragraph in cell.paragraphs:
                    for run in paragraph.runs:
                        if is_red(run):
                            red_text += run.text

                print(f"        πŸ“‹ Red text content: '{red_text[:50]}...'")

                # Check if this red text looks like attendance data (contains names/manager/etc)
                red_text_lower = red_text.lower()
                if any(indicator in red_text_lower for indicator in ['manager', 'herbig', 'palin', '–', '-']):
                    target_cell = cell
                    print(f"        βœ… This looks like attendance data - using this cell")
                    break

        if target_cell is not None:
            break

    # If no red text found that looks like attendance data, return
    if target_cell is None:
        print(f"    ⚠️ No red text found that looks like attendance data")
        return 0

    # Replace red text with properly formatted attendance list
    if has_red_text(target_cell):
        print(f"    πŸ”§ Replacing red text with properly formatted attendance list...")

        # Ensure attendance_value is a list
        if isinstance(attendance_value, list):
            attendance_list = [str(item).strip() for item in attendance_value if str(item).strip()]
        else:
            attendance_list = [str(attendance_value).strip()]

        print(f"    πŸ“ Attendance items to add:")
        for i, item in enumerate(attendance_list):
            print(f"        {i+1}. {item}")

        # Replace with line-separated attendance list
        replacement_text = "\n".join(attendance_list)
        cell_replacements = replace_red_text_in_cell(target_cell, replacement_text)
        replacements_made += cell_replacements

        print(f"    βœ… Added {len(attendance_list)} attendance items")
        print(f"    πŸ“Š Replacements made: {cell_replacements}")

    return replacements_made

def fix_management_summary_details_column(table, flat_json):
    """Fix the DETAILS column in Management Summary table"""
    replacements_made = 0

    print(f"    🎯 FIX: Management Summary DETAILS column processing")

    # Check if this is a Management Summary table
    table_text = ""
    for row in table.rows[:2]:
        for cell in row.cells:
            table_text += get_clean_text(cell).lower() + " "

    if not ("mass management" in table_text and "details" in table_text):
        return 0

    print(f"    βœ… Confirmed Mass Management Summary table")

    # Process each row looking for Std 5. and Std 6. with red text
    for row_idx, row in enumerate(table.rows):
        if len(row.cells) >= 2:
            standard_cell = row.cells[0]
            details_cell = row.cells[1]

            standard_text = get_clean_text(standard_cell).strip()

            # Look for Std 5. Verification and Std 6. Internal Review specifically
            if "Std 5." in standard_text and "Verification" in standard_text:
                if has_red_text(details_cell):
                    print(f"      πŸ” Found Std 5. Verification with red text")

                    json_value = find_matching_json_value("Std 5. Verification", flat_json)
                    if json_value is not None:
                        replacement_text = get_value_as_string(json_value, "Std 5. Verification")
                        cell_replacements = replace_red_text_in_cell(details_cell, replacement_text)
                        replacements_made += cell_replacements
                        print(f"      βœ… Replaced Std 5. Verification details")

            elif "Std 6." in standard_text and "Internal Review" in standard_text:
                if has_red_text(details_cell):
                    print(f"      πŸ” Found Std 6. Internal Review with red text")

                    json_value = find_matching_json_value("Std 6. Internal Review", flat_json)
                    if json_value is not None:
                        replacement_text = get_value_as_string(json_value, "Std 6. Internal Review")
                        cell_replacements = replace_red_text_in_cell(details_cell, replacement_text)
                        replacements_made += cell_replacements
                        print(f"      βœ… Replaced Std 6. Internal Review details")

    return replacements_made

# ========================================================================
# IMPORTANT: Single canonical definition for Operator Declaration fixer
# ========================================================================

def fix_operator_declaration_empty_values(table, flat_json):
    """Fix Operator Declaration table when values are empty or need updating.
    - Prefer exact qualified keys.
    - If JSON has combined 'Name - Position', split it safely.
    - Only write into cells that are empty or contain red text.
    - Mark table as processed on success.
    """
    replacements_made = 0

    print(f"    🎯 FIX: Operator Declaration empty values processing")

    # Check if this is an Operator Declaration table
    table_context = ""
    for row in table.rows:
        for cell in row.cells:
            table_context += get_clean_text(cell).lower() + " "

    if not ("print name" in table_context and "position title" in table_context):
        return 0

    print(f"    βœ… Confirmed Operator Declaration table")

    def parse_name_and_position(value):
        """Try to split combined name/position values into (name, position)."""
        if value is None:
            return None, None

        # If it's a list: common pattern is [name, position]
        if isinstance(value, list):
            if len(value) == 0:
                return None, None
            if len(value) == 1:
                return str(value[0]).strip(), None
            # use first two sensible entries
            first = str(value[0]).strip()
            second = str(value[1]).strip()
            if first and second:
                return first, second
            value = " ".join(str(v).strip() for v in value if str(v).strip())

        s = str(value).strip()
        if not s:
            return None, None

        # Common separators: hyphen, en-dash, em-dash, comma, pipe
        parts = re.split(r'\s+[-–—]\s+|\s*,\s*|\s*\|\s*', s)
        if len(parts) >= 2:
            left = parts[0].strip()
            right = parts[1].strip()
            role_indicators = ['manager', 'auditor', 'owner', 'director', 'supervisor',
                               'coordinator', 'driver', 'operator', 'representative', 'chief']
            if any(ind in right.lower() for ind in role_indicators) or len(right.split()) <= 4:
                return left, right
            if any(ind in left.lower() for ind in role_indicators) and not any(ind in right.lower() for ind in role_indicators):
                return right, left
            return left, right

        # If no separator, check trailing role token
        tokens = s.split()
        if len(tokens) >= 2:
            last = tokens[-1]
            role_indicators = ['manager', 'auditor', 'owner', 'director', 'supervisor',
                               'coordinator', 'driver', 'operator', 'representative', 'chief']
            if any(ind == last.lower() for ind in role_indicators):
                return " ".join(tokens[:-1]), last

        # fallback: treat entire string as name
        return s, None

    # Locate header row + data row
    for row_idx, row in enumerate(table.rows):
        if len(row.cells) >= 2:
            cell1_text = get_clean_text(row.cells[0]).strip().lower()
            cell2_text = get_clean_text(row.cells[1]).strip().lower()

            if "print name" in cell1_text and "position" in cell2_text:
                print(f"      πŸ“Œ Found header row at {row_idx + 1}")

                if row_idx + 1 < len(table.rows):
                    data_row = table.rows[row_idx + 1]
                    if len(data_row.cells) >= 2:
                        name_cell = data_row.cells[0]
                        position_cell = data_row.cells[1]

                        name_text = get_clean_text(name_cell).strip()
                        position_text = get_clean_text(position_cell).strip()
                        print(f"      πŸ“‹ Current values: Name='{name_text}', Position='{position_text}'")

                        # Prefer exact qualified keys first
                        name_value = find_matching_json_value("Operator Declaration.Print Name", flat_json)
                        if name_value is None:
                            name_value = find_matching_json_value("Print Name", flat_json)

                        position_value = find_matching_json_value("Operator Declaration.Position Title", flat_json)
                        if position_value is None:
                            position_value = find_matching_json_value("Position Title", flat_json)

                        # parse combined cases
                        parsed_name_from_nameval, parsed_pos_from_nameval = parse_name_and_position(name_value) if name_value is not None else (None, None)
                        parsed_name_from_posval, parsed_pos_from_posval = parse_name_and_position(position_value) if position_value is not None else (None, None)

                        # decide final candidates
                        final_name = None
                        final_pos = None

                        if parsed_name_from_nameval:
                            final_name = parsed_name_from_nameval
                        elif name_value is not None:
                            final_name = get_value_as_string(name_value)

                        # position preference: parsed_pos_from_posval > explicit position_value > parsed_pos_from_nameval
                        if parsed_pos_from_posval:
                            final_pos = parsed_pos_from_posval
                        elif position_value is not None:
                            final_pos = get_value_as_string(position_value)
                        elif parsed_pos_from_nameval:
                            final_pos = parsed_pos_from_nameval

                        # normalize
                        if isinstance(final_name, list):
                            final_name = " ".join(str(x) for x in final_name).strip()
                        if isinstance(final_pos, list):
                            final_pos = " ".join(str(x) for x in final_pos).strip()
                        if isinstance(final_name, str):
                            final_name = final_name.strip()
                        if isinstance(final_pos, str):
                            final_pos = final_pos.strip()

                        def looks_like_person(name_str):
                            if not name_str:
                                return False
                            bad_phrases = ["pty ltd", "company", "farming", "p/l", "plc"]
                            low = name_str.lower()
                            if any(bp in low for bp in bad_phrases):
                                return False
                            return len(name_str) > 1

                        # Write name if empty or red
                        if (not name_text or has_red_text(name_cell)) and final_name and looks_like_person(final_name):
                            if has_red_text(name_cell):
                                replace_red_text_in_cell(name_cell, final_name)
                            else:
                                name_cell.text = final_name
                            replacements_made += 1
                            print(f"      βœ… Updated Print Name -> '{final_name}'")

                        # Write position if empty or red
                        if (not position_text or has_red_text(position_cell)) and final_pos:
                            if has_red_text(position_cell):
                                replace_red_text_in_cell(position_cell, final_pos)
                            else:
                                position_cell.text = final_pos
                            replacements_made += 1
                            print(f"      βœ… Updated Position Title -> '{final_pos}'")

                break

    # mark processed
    if replacements_made > 0:
        try:
            setattr(table, "_processed_operator_declaration", True)
            print("    πŸ”– Marked table as processed by Operator Declaration handler")
        except Exception:
            pass

    return replacements_made

def handle_multiple_red_segments_in_cell(cell, flat_json):
    """Handle multiple red text segments within a single cell"""
    replacements_made = 0

    red_segments = extract_red_text_segments(cell)
    if not red_segments:
        return 0

    # Try to match each segment individually
    for i, segment in enumerate(red_segments):
        segment_text = segment['text'].strip()
        if segment_text:
            json_value = find_matching_json_value(segment_text, flat_json)
            if json_value is not None:
                replacement_text = get_value_as_string(json_value, segment_text)
                if replace_single_segment(segment, replacement_text):
                    replacements_made += 1
                    print(f"      βœ… Replaced segment {i+1}: '{segment_text}' -> '{replacement_text}'")

    return replacements_made

def handle_nature_business_multiline_fix(cell, flat_json):
    """Handle Nature of Business multiline red text"""
    replacements_made = 0

    # Extract red text to check if it looks like nature of business
    red_text = ""
    for paragraph in cell.paragraphs:
        for run in paragraph.runs:
            if is_red(run):
                red_text += run.text

    red_text = red_text.strip()
    if not red_text:
        return 0

    # Check if this looks like nature of business content
    nature_indicators = ["transport", "logistics", "freight", "delivery", "trucking", "haulage"]
    if any(indicator in red_text.lower() for indicator in nature_indicators):
        # Try to find nature of business in JSON
        nature_value = find_matching_json_value("Nature of Business", flat_json)
        if nature_value is not None:
            replacement_text = get_value_as_string(nature_value, "Nature of Business")
            cell_replacements = replace_red_text_in_cell(cell, replacement_text)
            replacements_made += cell_replacements
            print(f"      βœ… Fixed Nature of Business multiline content")

    return replacements_made

def handle_management_summary_fix(cell, flat_json):
    """Handle Management Summary content fixes"""
    replacements_made = 0

    # Extract red text
    red_text = ""
    for paragraph in cell.paragraphs:
        for run in paragraph.runs:
            if is_red(run):
                red_text += run.text

    red_text = red_text.strip()
    if not red_text:
        return 0

    # Look for management summary data in new schema format
    management_types = ["Mass Management Summary", "Maintenance Management Summary", "Fatigue Management Summary"]

    for mgmt_type in management_types:
        if mgmt_type in flat_json:
            mgmt_data = flat_json[mgmt_type]
            if isinstance(mgmt_data, dict):
                # Try to match red text with any standard in this management type
                for std_key, std_value in mgmt_data.items():
                    if isinstance(std_value, list) and std_value:
                        # Check if red text matches this standard
                        if len(red_text) > 10:
                            for item in std_value:
                                if red_text.lower() in str(item).lower() or str(item).lower() in red_text.lower():
                                    replacement_text = "\n".join(str(i) for i in std_value)
                                    cell_replacements = replace_red_text_in_cell(cell, replacement_text)
                                    replacements_made += cell_replacements
                                    print(f"      βœ… Fixed {mgmt_type} - {std_key}")
                                    return replacements_made

    return replacements_made

# ========================================================================
# SMALL OPERATOR/AUDITOR TABLE HANDLER (skip if already processed)
# ========================================================================

def handle_operator_declaration_fix(table, flat_json):
    """Wrapper for small declaration tables. Delegate to canonical fix first.
    If canonical did not change anything, fall back to the small-table auditor handling.
    Safeguards: do not replace with date-like values; prefer person/role candidates.
    """
    replacements_made = 0

    # skip if already processed
    if getattr(table, "_processed_operator_declaration", False):
        print(f"    ⏭️ Skipping - Operator Declaration table already processed")
        return 0

    # only intended for small tables; if large, skip
    if len(table.rows) > 4:
        return 0

    # First: try canonical operator declaration handler (covers primary case)
    replaced = fix_operator_declaration_empty_values(table, flat_json)
    replacements_made += replaced
    if replaced:
        # canonical handled it and set the processed flag
        return replacements_made

    # --- Helper validators (local, minimal, safe) ---
    def is_date_like(s: str) -> bool:
        if not s:
            return False
        s = s.strip()
        # common tokens that indicate a date string
        month_names = r"(jan|feb|mar|apr|may|jun|jul|aug|sep|sept|oct|nov|dec|january|february|march|april|may|june|july|august|september|october|november|december)"
        # patterns: "2nd November 2023", "02/11/2023", "2023-11-02", "November 2023", "Date"
        if re.search(r"\bDate\b", s, re.IGNORECASE):
            return True
        if re.search(r"\b\d{1,2}(?:st|nd|rd|th)?\b\s+" + month_names, s, re.IGNORECASE):
            return True
        if re.search(month_names + r".*\b\d{4}\b", s, re.IGNORECASE):
            return True
        if re.search(r"\b\d{1,2}[\/\.\-]\d{1,2}[\/\.\-]\d{2,4}\b", s):
            return True
        if re.search(r"\b\d{4}[\/\.\-]\d{1,2}[\/\.\-]\d{1,2}\b", s):
            return True
        # single 4-digit year alone
        if re.fullmatch(r"\d{4}", s):
            return True
        return False

    def looks_like_person_name(s: str) -> bool:
        if not s:
            return False
        low = s.lower().strip()
        # reject org/company terms
        bad_terms = ["pty ltd", "p/l", "plc", "company", "farming", "farm", "trust", "ltd"]
        if any(bt in low for bt in bad_terms):
            return False
        # minimal length check and presence of alphabetic characters
        if len(low) < 3:
            return False
        return bool(re.search(r"[a-zA-Z]", low))

    def looks_like_position(s: str) -> bool:
        if not s:
            return False
        low = s.lower()
        roles = ["manager", "auditor", "owner", "director", "supervisor", "coordinator", "driver", "operator", "representative", "chief"]
        return any(r in low for r in roles)

    # fallback: original small-table behaviour (auditor declaration etc.)
    print(f"    🎯 Processing other declaration table (fallback small-table behavior)")

    for row_idx, row in enumerate(table.rows):
        for cell_idx, cell in enumerate(row.cells):
            if not has_red_text(cell):
                # do not overwrite non-red content in fallback
                continue

            # Try auditor-specific fields first
            declaration_fields = [
                "NHVAS Approved Auditor Declaration.Print Name",
                "Auditor name",
                "Signature",
                "Date"
            ]

            replaced_this_cell = False
            for field in declaration_fields:
                field_value = find_matching_json_value(field, flat_json)
                if field_value is None:
                    continue

                replacement_text = get_value_as_string(field_value, field).strip()
                if not replacement_text:
                    continue

                # SAFEGUARD: do not replace with date-like text for name/position cells
                if is_date_like(replacement_text):
                    # allow genuinely date-targeted cells (if red text explicitly contains 'date')
                    # but skip using a date string to fill 'name' or 'position' slots
                    # check the red text in the cell to see if it expects a date
                    red_text = "".join(run.text for p in cell.paragraphs for run in p.runs if is_red(run)).strip()
                    if "date" not in red_text.lower():
                        print(f"      ⚠️ Skipping date-like replacement for field '{field}' -> '{replacement_text[:30]}...'")
                        continue

                # Further safeguard: if replacement looks like a person or role, only then write into name/position cells
                if (looks_like_person_name(replacement_text) or looks_like_position(replacement_text) or "signature" in field.lower() or "date" in field.lower()):
                    # Replace only red runs (safe)
                    cell_replacements = replace_red_text_in_cell(cell, replacement_text)
                    if cell_replacements > 0:
                        replacements_made += cell_replacements
                        replaced_this_cell = True
                        print(f"      βœ… Fixed declaration field: {field} -> '{replacement_text}'")
                        break
                else:
                    # Not a person or role-looking text β€” skip to avoid clobbering name/position with unrelated content
                    print(f"      ⚠️ Replacement for field '{field}' does not look like name/role, skipping: '{replacement_text[:30]}...'")
                    continue

            # If not replaced by the declared fields, try to infer from the cell's red text (date/signature fallback)
            if not replaced_this_cell:
                red_text = "".join(run.text for p in cell.paragraphs for run in p.runs if is_red(run)).strip().lower()
                if "signature" in red_text:
                    cell_replacements = replace_red_text_in_cell(cell, "[Signature]")
                    if cell_replacements > 0:
                        replacements_made += cell_replacements
                        print(f"      βœ… Inserted placeholder [Signature]")
                elif "date" in red_text:
                    # Try to find a date value in JSON for an explicit date slot else skip
                    date_value = find_matching_json_value("Date", flat_json) or find_matching_json_value("Date of Audit", flat_json) or find_matching_json_value("Audit was conducted on", flat_json)
                    if date_value is not None:
                        date_text = get_value_as_string(date_value)
                        if not is_date_like(date_text):
                            # defensive: if the date value is not date-like, skip
                            print(f"      ⚠️ Found date-value but not date-like, skipping: '{date_text}'")
                        else:
                            cell_replacements = replace_red_text_in_cell(cell, date_text)
                            if cell_replacements > 0:
                                replacements_made += cell_replacements
                                print(f"      βœ… Inserted date value: '{date_text}'")

    # if any replacements made here, mark processed
    if replacements_made > 0:
        try:
            setattr(table, "_processed_operator_declaration", True)
            print("    πŸ”– Marked table as processed by operator declaration fallback")
        except Exception:
            pass

    return replacements_made

def handle_print_accreditation_section(table, flat_json):
    """Handle Print Accreditation section - SKIP Operator Declaration tables"""
    replacements_made = 0

    # <<< PATCH: skip if operator declaration already processed
    if getattr(table, "_processed_operator_declaration", False):
        print(f"    ⏭️ Skipping Print Accreditation - this is an Operator Declaration table")
        return 0
    # <<< END PATCH

    # Get table context to check what type of table this is
    table_context = ""
    for row in table.rows:
        for cell in row.cells:
            table_context += get_clean_text(cell).lower() + " "

    # SKIP if this is an Operator Declaration table
    if "operator declaration" in table_context or ("print name" in table_context and "position title" in table_context):
        print(f"    ⏭️ Skipping Print Accreditation - this is an Operator Declaration table")
        return 0

    print(f"    πŸ“‹ Processing Print Accreditation section")

    for row_idx, row in enumerate(table.rows):
        for cell_idx, cell in enumerate(row.cells):
            if has_red_text(cell):
                # Try print accreditation fields
                accreditation_fields = [
                    "(print accreditation name)",
                    "Operator name (Legal entity)",
                    "Print accreditation name"
                ]

                for field in accreditation_fields:
                    field_value = find_matching_json_value(field, flat_json)
                    if field_value is not None:
                        replacement_text = get_value_as_string(field_value, field)
                        if replacement_text.strip():
                            cell_replacements = replace_red_text_in_cell(cell, replacement_text)
                            replacements_made += cell_replacements
                            if cell_replacements > 0:
                                print(f"      βœ… Fixed accreditation: {field}")
                            break

    return replacements_made

def process_single_column_sections(cell, key_text, flat_json):
    """Process single column sections with red text"""
    replacements_made = 0

    if has_red_text(cell):
        red_text = ""
        for paragraph in cell.paragraphs:
            for run in paragraph.runs:
                if is_red(run):
                    red_text += run.text

        if red_text.strip():
            # Try direct matching first
            section_value = find_matching_json_value(red_text.strip(), flat_json)
            if section_value is None:
                # Try key-based matching
                section_value = find_matching_json_value(key_text, flat_json)

            if section_value is not None:
                section_replacement = get_value_as_string(section_value, red_text.strip())
                cell_replacements = replace_red_text_in_cell(cell, section_replacement)
                replacements_made += cell_replacements
                if cell_replacements > 0:
                    print(f"      βœ… Fixed single column section: '{key_text}'")

    return replacements_made

# ============================================================================
# MAIN TABLE/PARAGRAPH PROCESSING
# ============================================================================

def process_tables(document, flat_json):
    """Process all tables in the document with comprehensive fixes"""
    replacements_made = 0

    for table_idx, table in enumerate(document.tables):
        print(f"\nπŸ” Processing table {table_idx + 1}:")

        # Get table context
        table_text = ""
        for row in table.rows[:3]:
            for cell in row.cells:
                table_text += get_clean_text(cell).lower() + " "

        # Detect Management Summary tables
        management_summary_indicators = ["mass management", "maintenance management", "fatigue management"]
        has_management = any(indicator in table_text for indicator in management_summary_indicators)
        has_details = "details" in table_text

        if has_management and has_details:
            print(f"    πŸ“‹ Detected Management Summary table")
            summary_fixes = fix_management_summary_details_column(table, flat_json)
            replacements_made += summary_fixes

            # Process remaining red text in management summary
            summary_replacements = 0
            for row_idx, row in enumerate(table.rows):
                for cell_idx, cell in enumerate(row.cells):
                    if has_red_text(cell):
                        # Try direct matching with the new schema names first
                        for mgmt_type in ["Mass Management Summary", "Maintenance Management Summary", "Fatigue Management Summary"]:
                            if mgmt_type.lower().replace(" summary", "") in table_text:
                                # Look for this standard in the JSON
                                if mgmt_type in flat_json:
                                    mgmt_data = flat_json[mgmt_type]
                                    if isinstance(mgmt_data, dict):
                                        for std_key, std_value in mgmt_data.items():
                                            if isinstance(std_value, list) and len(std_value) > 0:
                                                red_text = "".join(run.text for p in cell.paragraphs for run in p.runs if is_red(run)).strip()
                                                for item in std_value:
                                                    if len(red_text) > 15 and red_text.lower() in str(item).lower():
                                                        replacement_text = "\n".join(str(i) for i in std_value)
                                                        cell_replacements = replace_red_text_in_cell(cell, replacement_text)
                                                        summary_replacements += cell_replacements
                                                        print(f"        βœ… Updated {std_key} with summary data")
                                                        break
                                break

                        if summary_replacements == 0:
                            cell_replacements = handle_management_summary_fix(cell, flat_json)
                            summary_replacements += cell_replacements

            replacements_made += summary_replacements
            continue

        # Detect Vehicle Registration tables
        vehicle_indicators = ["registration number", "sub-contractor", "weight verification", "rfs suspension"]
        indicator_count = sum(1 for indicator in vehicle_indicators if indicator in table_text)
        if indicator_count >= 2:
            print(f"    πŸš— Detected Vehicle Registration table")
            vehicle_replacements = handle_vehicle_registration_table(table, flat_json)
            replacements_made += vehicle_replacements
            continue

        # Detect Attendance List tables
        if "attendance list" in table_text and "names and position titles" in table_text:
            print(f"    πŸ‘₯ Detected Attendance List table")
            attendance_replacements = handle_attendance_list_table_enhanced(table, flat_json)
            replacements_made += attendance_replacements
            continue

        # Detect Print Accreditation / Operator Declaration tables
        print_accreditation_indicators = ["print name", "position title"]
        indicator_count = sum(1 for indicator in print_accreditation_indicators if indicator in table_text)

        # <<< PATCH: require both indicators (or two matches) to reduce false positives
        if indicator_count >= 2 or ("print name" in table_text and "position title" in table_text):
            print(f"    πŸ“‹ Detected Print Accreditation/Operator Declaration table")

            # First, try strong operator declaration fix (exact keys)
            declaration_fixes = fix_operator_declaration_empty_values(table, flat_json)
            replacements_made += declaration_fixes

            # Then only run print accreditation section if not marked processed
            if not getattr(table, "_processed_operator_declaration", False):
                print_accreditation_replacements = handle_print_accreditation_section(table, flat_json)
                replacements_made += print_accreditation_replacements

            continue

        # Process regular table rows (same as your original logic)
        for row_idx, row in enumerate(table.rows):
            if len(row.cells) < 1:
                continue

            key_cell = row.cells[0]
            key_text = get_clean_text(key_cell)

            if not key_text:
                continue

            print(f"  πŸ“Œ Row {row_idx + 1}: Key = '{key_text}'")

            json_value = find_matching_json_value(key_text, flat_json)

            if json_value is not None:
                replacement_text = get_value_as_string(json_value, key_text)

                # Handle Australian Company Number
                if ("australian company number" in key_text.lower() or "company number" in key_text.lower()) and isinstance(json_value, list):
                    cell_replacements = handle_australian_company_number(row, json_value)
                    replacements_made += cell_replacements

                # Handle section headers
                elif ("attendance list" in key_text.lower() or "nature of" in key_text.lower()) and row_idx + 1 < len(table.rows):
                    print(f"    βœ… Section header detected, checking next row...")
                    next_row = table.rows[row_idx + 1]

                    for cell_idx, cell in enumerate(next_row.cells):
                        if has_red_text(cell):
                            print(f"    βœ… Found red text in next row, cell {cell_idx + 1}")
                            if isinstance(json_value, list):
                                replacement_text = "\n".join(str(item) for item in json_value)
                            cell_replacements = replace_red_text_in_cell(cell, replacement_text)
                            replacements_made += cell_replacements
                            if cell_replacements > 0:
                                print(f"    -> Replaced section content")

                # Handle single column sections
                elif len(row.cells) == 1 or (len(row.cells) > 1 and not any(has_red_text(row.cells[i]) for i in range(1, len(row.cells)))):
                    if has_red_text(key_cell):
                        cell_replacements = process_single_column_sections(key_cell, key_text, flat_json)
                        replacements_made += cell_replacements

                # Handle regular key-value pairs
                else:
                    for cell_idx in range(1, len(row.cells)):
                        value_cell = row.cells[cell_idx]
                        if has_red_text(value_cell):
                            print(f"    βœ… Found red text in column {cell_idx + 1}")
                            cell_replacements = replace_red_text_in_cell(value_cell, replacement_text)
                            replacements_made += cell_replacements

            else:
                # Fallback processing for unmatched keys
                if len(row.cells) == 1 and has_red_text(key_cell):
                    red_text = ""
                    for paragraph in key_cell.paragraphs:
                        for run in paragraph.runs:
                            if is_red(run):
                                red_text += run.text
                    if red_text.strip():
                        section_value = find_matching_json_value(red_text.strip(), flat_json)
                        if section_value is not None:
                            section_replacement = get_value_as_string(section_value, red_text.strip())
                            cell_replacements = replace_red_text_in_cell(key_cell, section_replacement)
                            replacements_made += cell_replacements

                # Process red text in all cells
                for cell_idx in range(len(row.cells)):
                    cell = row.cells[cell_idx]
                    if has_red_text(cell):
                        cell_replacements = handle_multiple_red_segments_in_cell(cell, flat_json)
                        replacements_made += cell_replacements

                        # Apply fixes if no replacements made
                        if cell_replacements == 0:
                            surgical_fix = handle_nature_business_multiline_fix(cell, flat_json)
                            replacements_made += surgical_fix

                        if cell_replacements == 0:
                            management_summary_fix = handle_management_summary_fix(cell, flat_json)
                            replacements_made += management_summary_fix

    # Handle Operator/Auditor Declaration tables (check last few tables)
    print(f"\n🎯 Final check for Declaration tables...")
    for table in document.tables[-3:]:
        if len(table.rows) <= 4:
            if getattr(table, "_processed_operator_declaration", False):
                print(f"    ⏭️ Skipping - already processed by operator declaration handler")
                continue
            declaration_fix = handle_operator_declaration_fix(table, flat_json)
            replacements_made += declaration_fix

    return replacements_made

def process_paragraphs(document, flat_json):
    """Process all paragraphs in the document"""
    replacements_made = 0
    print(f"\nπŸ” Processing paragraphs:")

    for para_idx, paragraph in enumerate(document.paragraphs):
        red_runs = [run for run in paragraph.runs if is_red(run) and run.text.strip()]
        if red_runs:
            red_text_only = "".join(run.text for run in red_runs).strip()
            print(f"  πŸ“Œ Paragraph {para_idx + 1}: Found red text: '{red_text_only}'")

            json_value = find_matching_json_value(red_text_only, flat_json)

            if json_value is None:
                # Enhanced pattern matching for signatures and dates
                if "AUDITOR SIGNATURE" in red_text_only.upper() or "DATE" in red_text_only.upper():
                    json_value = find_matching_json_value("auditor signature", flat_json)
                elif "OPERATOR SIGNATURE" in red_text_only.upper():
                    json_value = find_matching_json_value("operator signature", flat_json)

            if json_value is not None:
                replacement_text = get_value_as_string(json_value)
                print(f"    βœ… Replacing red text with: '{replacement_text}'")
                red_runs[0].text = replacement_text
                red_runs[0].font.color.rgb = RGBColor(0, 0, 0)
                for run in red_runs[1:]:
                    run.text = ''
                replacements_made += 1

    return replacements_made

def process_headings(document, flat_json):
    """Process headings and their related content"""
    replacements_made = 0
    print(f"\nπŸ” Processing headings:")

    paragraphs = document.paragraphs

    for para_idx, paragraph in enumerate(paragraphs):
        paragraph_text = paragraph.text.strip()

        if not paragraph_text:
            continue

        # Check if this is a heading
        matched_heading = None
        for category, patterns in HEADING_PATTERNS.items():
            for pattern in patterns:
                if re.search(pattern, paragraph_text, re.IGNORECASE):
                    matched_heading = pattern
                    break
            if matched_heading:
                break

        if matched_heading:
            print(f"  πŸ“Œ Found heading at paragraph {para_idx + 1}: '{paragraph_text}'")

            # Check current heading paragraph
            if has_red_text_in_paragraph(paragraph):
                print(f"    πŸ”΄ Found red text in heading itself")
                heading_replacements = process_red_text_in_paragraph(paragraph, paragraph_text, flat_json)
                replacements_made += heading_replacements

            # Look ahead for related content
            for next_para_offset in range(1, 6):
                next_para_idx = para_idx + next_para_offset
                if next_para_idx >= len(paragraphs):
                    break

                next_paragraph = paragraphs[next_para_idx]
                next_text = next_paragraph.text.strip()

                if not next_text:
                    continue

                # Stop if we hit another heading
                is_another_heading = False
                for category, patterns in HEADING_PATTERNS.items():
                    for pattern in patterns:
                        if re.search(pattern, next_text, re.IGNORECASE):
                            is_another_heading = True
                            break
                    if is_another_heading:
                        break

                if is_another_heading:
                    break

                # Process red text with context
                if has_red_text_in_paragraph(next_paragraph):
                    print(f"    πŸ”΄ Found red text in paragraph {next_para_idx + 1} after heading")

                    context_replacements = process_red_text_in_paragraph(
                        next_paragraph,
                        paragraph_text,
                        flat_json
                    )
                    replacements_made += context_replacements

    return replacements_made

def process_red_text_in_paragraph(paragraph, context_text, flat_json):
    """Process red text within a paragraph using context"""
    replacements_made = 0

    red_text_segments = []
    for run in paragraph.runs:
        if is_red(run) and run.text.strip():
            red_text_segments.append(run.text.strip())

    if not red_text_segments:
        return 0

    combined_red_text = " ".join(red_text_segments).strip()
    print(f"      πŸ” Red text found: '{combined_red_text}'")

    json_value = None

    # Direct matching
    json_value = find_matching_json_value(combined_red_text, flat_json)

    # Context-based matching
    if json_value is None:
        if "NHVAS APPROVED AUDITOR" in context_text.upper():
            auditor_fields = ["auditor name", "auditor", "nhvas auditor", "approved auditor", "print name"]
            for field in auditor_fields:
                json_value = find_matching_json_value(field, flat_json)
                if json_value is not None:
                    print(f"      βœ… Found auditor match with field: '{field}'")
                    break

        elif "OPERATOR DECLARATION" in context_text.upper():
            operator_fields = ["operator name", "operator", "company name", "organisation name", "print name"]
            for field in operator_fields:
                json_value = find_matching_json_value(field, flat_json)
                if json_value is not None:
                    print(f"      βœ… Found operator match with field: '{field}'")
                    break

    # Combined context queries
    if json_value is None:
        context_queries = [
            f"{context_text} {combined_red_text}",
            combined_red_text,
            context_text
        ]

        for query in context_queries:
            json_value = find_matching_json_value(query, flat_json)
            if json_value is not None:
                print(f"      βœ… Found match with combined query")
                break

    # Replace if match found
    if json_value is not None:
        replacement_text = get_value_as_string(json_value, combined_red_text)

        red_runs = [run for run in paragraph.runs if is_red(run) and run.text.strip()]
        if red_runs:
            red_runs[0].text = replacement_text
            red_runs[0].font.color.rgb = RGBColor(0, 0, 0)

            for run in red_runs[1:]:
                run.text = ''

            replacements_made = 1
            print(f"      βœ… Replaced with: '{replacement_text}'")
    else:
        print(f"      ❌ No match found for red text: '{combined_red_text}'")

    return replacements_made



def process_hf(json_file, docx_file, output_file):
    """Main processing function with comprehensive error handling"""
    try:
        # Load JSON
        if hasattr(json_file, "read"):
            json_data = json.load(json_file)
        else:
            with open(json_file, 'r', encoding='utf-8') as f:
                json_data = json.load(f)

        flat_json = flatten_json(json_data)
        print("πŸ“„ Available JSON keys (sample):")
        for i, (key, value) in enumerate(sorted(flat_json.items())):
            if i < 10:
                print(f"  - {key}: {value}")
        print(f"  ... and {len(flat_json) - 10} more keys\n")

        # Load DOCX
        if hasattr(docx_file, "read"):
            doc = Document(docx_file)
        else:
            doc = Document(docx_file)

        # Process document with all fixes
        print("πŸš€ Starting comprehensive document processing...")

        table_replacements = process_tables(doc, flat_json)
        paragraph_replacements = process_paragraphs(doc, flat_json)
        heading_replacements = process_headings(doc, flat_json)

        # Final force fix for any remaining red text
        #force_replacements = force_red_text_replacement(doc, flat_json)

        total_replacements = table_replacements + paragraph_replacements + heading_replacements 
        #+ force_replacements

        # Save output
        if hasattr(output_file, "write"):
            doc.save(output_file)
        else:
            doc.save(output_file)

        print(f"\nβœ… Document saved as: {output_file}")
        print(f"βœ… Total replacements: {total_replacements}")
        print(f"   πŸ“Š Tables: {table_replacements}")
        print(f"   πŸ“ Paragraphs: {paragraph_replacements}")
        print(f"   πŸ“‹ Headings: {heading_replacements}")
        #print(f"   🎯 Force fixes: {force_replacements}")
        print(f"πŸŽ‰ Processing complete!")

    except FileNotFoundError as e:
        print(f"❌ File not found: {e}")
    except Exception as e:
        print(f"❌ Error: {e}")
        import traceback
        traceback.print_exc()

if __name__ == "__main__":
    import sys
    if len(sys.argv) != 4:
        print("Usage: python pipeline.py <input_docx> <updated_json> <output_docx>")
        exit(1)
    docx_path = sys.argv[1]
    json_path = sys.argv[2]
    output_path = sys.argv[3]
    process_hf(json_path, docx_path, output_path)