File size: 62,284 Bytes
da7e8af
 
d77de54
 
 
 
 
 
 
 
da7e8af
 
e8b46b5
 
 
 
d77de54
8bbc7e5
 
d77de54
8bbc7e5
c38c9d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bbc7e5
d77de54
8bbc7e5
 
 
 
 
 
 
e8b46b5
da7e8af
e8b46b5
 
c38c9d4
 
 
 
 
 
 
 
 
 
e8b46b5
 
 
da7e8af
8bbc7e5
da7e8af
 
e8b46b5
 
 
 
 
 
 
 
d77de54
e8b46b5
c38c9d4
d77de54
e8b46b5
 
 
b93e8d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bbc7e5
 
 
d77de54
8bbc7e5
 
 
d77de54
8bbc7e5
 
 
d77de54
 
8bbc7e5
b93e8d9
d77de54
 
 
 
b93e8d9
e8b46b5
d77de54
 
 
 
 
 
 
 
 
da7e8af
 
 
 
d77de54
e8b46b5
5b2b3a8
d77de54
da7e8af
d77de54
e8b46b5
 
d77de54
 
da7e8af
d77de54
c38c9d4
 
 
 
 
d77de54
c38c9d4
 
d77de54
da7e8af
d77de54
c38c9d4
 
d77de54
 
da7e8af
d77de54
c38c9d4
 
 
 
 
 
d77de54
 
da7e8af
d77de54
e8b46b5
5b2b3a8
 
da7e8af
5b2b3a8
d77de54
 
da7e8af
e8b46b5
 
5b2b3a8
 
da7e8af
d77de54
 
 
 
 
 
 
 
 
 
 
 
 
 
5b2b3a8
da7e8af
d77de54
 
 
 
da7e8af
d77de54
 
5b2b3a8
d77de54
da7e8af
e8b46b5
 
 
b93e8d9
d77de54
b93e8d9
c38c9d4
 
 
 
 
 
 
 
 
 
 
 
d77de54
c38c9d4
 
 
d77de54
c38c9d4
 
 
 
 
 
 
 
 
5b2b3a8
d77de54
 
 
 
 
 
 
 
c38c9d4
 
 
 
 
 
 
da7e8af
c38c9d4
 
 
 
 
 
da7e8af
c38c9d4
 
 
 
5b2b3a8
 
c38c9d4
 
 
 
 
 
 
 
 
 
b93e8d9
c38c9d4
 
 
b93e8d9
5efc8a5
b93e8d9
d77de54
b93e8d9
c38c9d4
 
 
 
 
 
 
 
 
 
 
 
 
 
d77de54
 
 
 
c38c9d4
da7e8af
d77de54
8bbc7e5
d77de54
 
 
 
 
 
8bbc7e5
 
 
c38c9d4
 
8bbc7e5
d77de54
c38c9d4
 
 
 
 
 
 
 
8bbc7e5
 
 
 
 
d77de54
8bbc7e5
d77de54
8bbc7e5
 
 
 
 
 
d77de54
 
 
8bbc7e5
 
 
 
 
d77de54
da7e8af
c38c9d4
da7e8af
d77de54
c38c9d4
 
 
8bbc7e5
d77de54
c38c9d4
 
 
da7e8af
c38c9d4
 
 
da7e8af
c38c9d4
da7e8af
d77de54
8bbc7e5
 
 
 
d77de54
 
 
 
 
 
8bbc7e5
d77de54
 
c38c9d4
 
8bbc7e5
 
d77de54
 
c38c9d4
da7e8af
8bbc7e5
c38c9d4
8bbc7e5
da7e8af
8bbc7e5
 
 
 
 
d77de54
8bbc7e5
 
 
 
 
 
 
 
 
d77de54
8bbc7e5
 
 
 
 
c38c9d4
8bbc7e5
da7e8af
d77de54
 
 
 
 
 
 
 
8bbc7e5
c38c9d4
d77de54
8bbc7e5
d77de54
8bbc7e5
da7e8af
c38c9d4
 
 
da7e8af
d77de54
c38c9d4
 
 
 
da7e8af
c38c9d4
da7e8af
d77de54
c38c9d4
 
 
d77de54
 
da7e8af
c38c9d4
 
 
 
 
 
 
 
 
 
 
 
 
d77de54
c38c9d4
 
 
 
d77de54
da7e8af
c38c9d4
 
076f0d9
d77de54
8df4ecc
d77de54
076f0d9
8bbc7e5
076f0d9
 
 
 
 
 
 
 
 
 
da7e8af
076f0d9
22b9cc9
76ff551
076f0d9
 
76ff551
076f0d9
22b9cc9
 
d77de54
 
 
 
76ff551
076f0d9
 
 
 
da7e8af
d77de54
76ff551
22b9cc9
 
 
 
 
 
 
 
 
d77de54
 
 
 
 
 
 
 
 
76ff551
da7e8af
76ff551
2c767ad
 
da7e8af
54d9a7f
428b626
2c767ad
428b626
a5282db
428b626
 
 
 
b93e8d9
 
2c767ad
b93e8d9
2c767ad
8df4ecc
 
3894cf3
d77de54
3894cf3
b93e8d9
3894cf3
8bbc7e5
3894cf3
 
8bbc7e5
 
 
 
 
d77de54
8bbc7e5
 
 
 
 
3894cf3
8bbc7e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b93e8d9
3894cf3
d77de54
 
 
3894cf3
 
c0e794c
3894cf3
 
 
 
 
 
 
da7e8af
61e7c5d
 
 
 
 
 
 
 
d77de54
61e7c5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f4d3cf
 
 
 
 
 
61e7c5d
 
3894cf3
 
 
 
d77de54
3894cf3
 
 
 
 
 
 
 
 
 
da7e8af
d77de54
 
 
 
 
 
61e7c5d
d77de54
 
61e7c5d
d77de54
61e7c5d
 
 
 
 
 
 
 
 
 
 
d77de54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61e7c5d
d77de54
61e7c5d
 
 
 
 
 
 
 
 
 
1f4d3cf
61e7c5d
 
 
 
 
d77de54
61e7c5d
d77de54
61e7c5d
 
 
 
 
 
 
 
d77de54
 
61e7c5d
 
 
 
 
 
da7e8af
c0e794c
da7e8af
 
 
 
 
 
 
 
c0e794c
 
 
 
 
 
 
 
 
 
d77de54
 
 
c0e794c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d77de54
 
 
c0e794c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d77de54
c0e794c
d77de54
 
 
 
 
 
 
4e326f4
d77de54
 
c0e794c
 
 
 
da7e8af
 
 
450ea05
 
 
 
 
 
 
c0e794c
 
 
 
 
 
da7e8af
d77de54
c0e794c
 
d77de54
 
 
c0e794c
 
 
 
d77de54
c0e794c
 
 
 
 
 
 
 
 
 
 
 
d77de54
 
 
 
 
c0e794c
 
 
 
3894cf3
 
da7e8af
d77de54
da7e8af
e8b46b5
 
 
 
c38c9d4
 
 
 
364a368
 
 
 
da7e8af
364a368
 
3894cf3
 
da7e8af
ae4477c
 
 
 
d4200b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da7e8af
d4200b4
 
 
da7e8af
364a368
 
da7e8af
d77de54
8bbc7e5
c38c9d4
 
 
 
 
 
da7e8af
d77de54
8df4ecc
 
076f0d9
8df4ecc
 
da7e8af
d77de54
c38c9d4
 
da7e8af
 
 
 
 
 
 
c38c9d4
da7e8af
d77de54
e8b46b5
7755a4a
e8b46b5
 
 
 
 
 
d77de54
 
da7e8af
e8b46b5
 
da7e8af
d77de54
e8b46b5
 
 
da7e8af
d77de54
c38c9d4
c0e794c
c38c9d4
 
e8b46b5
c38c9d4
 
d77de54
 
 
 
e8b46b5
 
c0e794c
da7e8af
d77de54
c38c9d4
 
 
 
da7e8af
d77de54
c38c9d4
 
 
 
 
 
 
da7e8af
e8b46b5
d77de54
c38c9d4
 
 
 
 
 
 
d77de54
 
 
c38c9d4
 
da7e8af
d77de54
e8b46b5
 
 
c38c9d4
 
 
 
 
c0e794c
8df4ecc
 
da7e8af
d77de54
c0e794c
 
 
da7e8af
 
 
d77de54
c0e794c
da7e8af
c0e794c
e8b46b5
 
 
 
 
c38c9d4
 
 
 
da7e8af
d77de54
 
da7e8af
c38c9d4
 
d77de54
c38c9d4
d77de54
 
da7e8af
7755a4a
ddb37e5
c38c9d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0e794c
c38c9d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0e794c
c38c9d4
da7e8af
c38c9d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d77de54
 
da7e8af
c38c9d4
 
 
 
d77de54
 
 
 
c38c9d4
 
 
 
d77de54
 
 
 
c38c9d4
da7e8af
c38c9d4
d77de54
c38c9d4
d77de54
 
 
 
c38c9d4
da7e8af
c38c9d4
 
 
 
 
 
 
 
 
 
 
 
da7e8af
7755a4a
 
8bbc7e5
d77de54
8bbc7e5
5b2b3a8
e8b46b5
5b2b3a8
 
 
 
 
da7e8af
c38c9d4
e8b46b5
5b2b3a8
 
e8b46b5
5b2b3a8
e8b46b5
5b2b3a8
 
 
 
e8b46b5
c0e794c
e8b46b5
 
c38c9d4
8bbc7e5
da7e8af
8bbc7e5
 
 
 
 
 
 
 
 
e8b46b5
5b2b3a8
 
 
 
da7e8af
5b2b3a8
7755a4a
 
 
c38c9d4
412e2ed
e8b46b5
 
 
 
 
 
 
 
a6e31ac
 
 
c38c9d4
a6e31ac
 
 
 
7755a4a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
#!/usr/bin/env python3
"""
pipeline.py β€” safer matching and operator-declaration protections

Key improvements:
 - find_matching_json_key_and_value() returns (key, value) so callers can accept/reject by key.
 - Higher fuzzy thresholds for risky substitutions.
 - Operator Declaration: avoid using attendance lists / unrelated keys for Position Title.
 - Vehicle header mapping: stronger normalized substring/ token matching for long headers.
 - Preserves existing logging and all previous handlers/logic.
"""

import json
from docx import Document
from docx.shared import RGBColor
import re
from typing import Any, Tuple, Optional

# ============================================================================
# Heading patterns for document structure detection (unchanged)
# ============================================================================
HEADING_PATTERNS = {
    "main": [
        r"NHVAS\s+Audit\s+Summary\s+Report",
        r"NATIONAL\s+HEAVY\s+VEHICLE\s+ACCREDITATION\s+AUDIT\s+SUMMARY\s+REPORT",
        r"NHVAS\s+AUDIT\s+SUMMARY\s+REPORT"
    ],
    "sub": [
        r"AUDIT\s+OBSERVATIONS\s+AND\s+COMMENTS",
        r"MAINTENANCE\s+MANAGEMENT",
        r"MASS\s+MANAGEMENT",
        r"FATIGUE\s+MANAGEMENT",
        r"Fatigue\s+Management\s+Summary\s+of\s+Audit\s+findings",
        r"MAINTENANCE\s+MANAGEMENT\s+SUMMARY\s+OF\s+AUDIT\s+FINDINGS",
        r"MASS\s+MANAGEMENT\s+SUMMARY\s+OF\s+AUDIT\s+FINDINGS",
        r"Vehicle\s+Registration\s+Numbers\s+of\s+Records\s+Examined",
        r"CORRECTIVE\s+ACTION\s+REQUEST\s+\(CAR\)",
        r"NHVAS\s+APPROVED\s+AUDITOR\s+DECLARATION",
        r"Operator\s+Declaration",
        r"Operator\s+Information",
        r"Driver\s*/\s*Scheduler\s+Records\s+Examined"
    ]
}

# ============================================================================
# Utility helpers
# ============================================================================
_unmatched_headers = {}
def record_unmatched_header(header: str):
    if not header:
        return
    _unmatched_headers[header] = _unmatched_headers.get(header, 0) + 1

def load_json(filepath):
    with open(filepath, 'r', encoding='utf-8') as file:
        return json.load(file)

def flatten_json(y, prefix=''):
    out = {}
    for key, val in y.items():
        new_key = f"{prefix}.{key}" if prefix else key
        if isinstance(val, dict):
            out.update(flatten_json(val, new_key))
        else:
            out[new_key] = val
            out[key] = val
    return out

def is_red(run):
    color = run.font.color
    try:
        return color and ((getattr(color, "rgb", None) and color.rgb == RGBColor(255, 0, 0)) or getattr(color, "theme_color", None) == 1)
    except Exception:
        return False

def get_value_as_string(value, field_name=""):
    if isinstance(value, list):
        if len(value) == 0:
            return ""
        elif len(value) == 1:
            return str(value[0])
        else:
            # Keep lists intact for special patterns (e.g., ACN digits) but default to join
            if "australian company number" in field_name.lower() or "company number" in field_name.lower():
                return value
            return " ".join(str(v) for v in value)
    else:
        return str(value)

def get_clean_text(cell):
    text = ""
    for paragraph in cell.paragraphs:
        for run in paragraph.runs:
            text += run.text
    return text.strip()

def has_red_text(cell):
    for paragraph in cell.paragraphs:
        for run in paragraph.runs:
            if is_red(run) and run.text.strip():
                return True
    return False

def has_red_text_in_paragraph(paragraph):
    for run in paragraph.runs:
        if is_red(run) and run.text.strip():
            return True
    return False

def normalize_header_text(s: str) -> str:
    if not s:
        return ""
    s = re.sub(r'\([^)]*\)', ' ', s)   # remove parenthetical content
    s = s.replace("/", " ")
    s = re.sub(r'[^\w\s\#\%]', ' ', s)
    s = re.sub(r'\s+', ' ', s).strip().lower()
    # canonical tweaks
    s = s.replace('registrationno', 'registration number')
    s = s.replace('registrationnumber', 'registration number')
    s = s.replace('sub-contractor', 'sub contractor')
    s = s.replace('sub contracted', 'sub contractor')
    return s.strip()

# ============================================================================
# JSON matching functions
#  - find_matching_json_value: (keeps behavior used elsewhere)
#  - find_matching_json_key_and_value: returns (key, value) so callers can
#    decide whether to use an entry based on the matched key.
# ============================================================================
def find_matching_json_value(field_name, flat_json):
    """Legacy API: return value only (preserves existing callers)."""
    result = find_matching_json_key_and_value(field_name, flat_json)
    return result[1] if result else None

def find_matching_json_key_and_value(field_name, flat_json) -> Optional[Tuple[str, Any]]:
    """
    Return (matched_key, matched_value) or None.
    Safer thresholds: fuzzy matches require >=0.35 by default.
    """
    field_name = (field_name or "").strip()
    if not field_name:
        return None

    # Exact match
    if field_name in flat_json:
        print(f"    βœ… Direct match found for key '{field_name}'")
        return field_name, flat_json[field_name]

    # Case-insensitive exact
    for key, value in flat_json.items():
        if key.lower() == field_name.lower():
            print(f"    βœ… Case-insensitive match found for key '{field_name}' -> '{key}'")
            return key, value

    # Special-case 'print name' preference for operator vs auditor (prefer fully-qualified)
    if field_name.lower().strip() == "print name":
        operator_keys = [k for k in flat_json.keys() if "operator" in k.lower() and "print name" in k.lower()]
        auditor_keys = [k for k in flat_json.keys() if "auditor" in k.lower() and ("print name" in k.lower() or "name" in k.lower())]
        if operator_keys:
            print(f"    βœ… Operator Print Name match: '{field_name}' -> '{operator_keys[0]}'")
            return operator_keys[0], flat_json[operator_keys[0]]
        elif auditor_keys:
            print(f"    βœ… Auditor Name match: '{field_name}' -> '{auditor_keys[0]}'")
            return auditor_keys[0], flat_json[auditor_keys[0]]

    # Suffix match for nested keys (e.g., 'section.field')
    for key, value in flat_json.items():
        if '.' in key and key.split('.')[-1].lower() == field_name.lower():
            print(f"    βœ… Suffix match found for key '{field_name}' -> '{key}'")
            return key, value

    # Clean and exact
    clean_field = re.sub(r'[^\w\s]', ' ', field_name.lower()).strip()
    clean_field = re.sub(r'\s+', ' ', clean_field)
    for key, value in flat_json.items():
        clean_key = re.sub(r'[^\w\s]', ' ', key.lower()).strip()
        clean_key = re.sub(r'\s+', ' ', clean_key)
        if clean_field == clean_key:
            print(f"    βœ… Clean match found for key '{field_name}' -> '{key}'")
            return key, value

    # Fuzzy matching with token scoring
    field_words = set(word.lower() for word in re.findall(r'\b\w+\b', field_name) if len(word) > 2)
    if not field_words:
        return None

    best_key = None
    best_value = None
    best_score = 0.0

    for key, value in flat_json.items():
        key_words = set(word.lower() for word in re.findall(r'\b\w+\b', key) if len(word) > 2)
        if not key_words:
            continue

        common = field_words.intersection(key_words)
        if not common:
            # allow substring in normalized forms as a weaker fallback
            norm_field = normalize_header_text(field_name)
            norm_key = normalize_header_text(key)
            if norm_field and norm_key and (norm_field in norm_key or norm_key in norm_field):
                # substring score based on length ratio
                substring_score = min(len(norm_field), len(norm_key)) / max(len(norm_field), len(norm_key))
                final_score = 0.4 * substring_score
            else:
                final_score = 0.0
        else:
            similarity = len(common) / len(field_words.union(key_words))
            coverage = len(common) / len(field_words)
            final_score = (similarity * 0.6) + (coverage * 0.4)

        if final_score > best_score:
            best_score = final_score
            best_key = key
            best_value = value

    # Accept only reasonable fuzzy matches (threshold 0.35)
    if best_key and best_score >= 0.35:
        print(f"    βœ… Fuzzy match found for key '{field_name}' with JSON key '{best_key}' (score: {best_score:.2f})")
        return best_key, best_value

    print(f"    ❌ No match found for '{field_name}'")
    return None

# ============================================================================
# Red text helpers (unchanged except kept robust)
# ============================================================================
def extract_red_text_segments(cell):
    red_segments = []
    for para_idx, paragraph in enumerate(cell.paragraphs):
        current_segment = ""
        segment_runs = []
        for run_idx, run in enumerate(paragraph.runs):
            if is_red(run):
                if run.text:
                    current_segment += run.text
                segment_runs.append((para_idx, run_idx, run))
            else:
                if segment_runs:
                    red_segments.append({'text': current_segment, 'runs': segment_runs.copy(), 'paragraph_idx': para_idx})
                    current_segment = ""
                    segment_runs = []
        if segment_runs:
            red_segments.append({'text': current_segment, 'runs': segment_runs.copy(), 'paragraph_idx': para_idx})
    return red_segments

def replace_all_red_segments(red_segments, replacement_text):
    if not red_segments:
        return 0
    if '\n' in replacement_text:
        replacement_lines = replacement_text.split('\n')
    else:
        replacement_lines = [replacement_text]
    replacements_made = 0
    first_segment = red_segments[0]
    if first_segment['runs']:
        first_run = first_segment['runs'][0][2]
        first_run.text = replacement_lines[0]
        first_run.font.color.rgb = RGBColor(0, 0, 0)
        replacements_made = 1
        for _, _, run in first_segment['runs'][1:]:
            run.text = ''
    for segment in red_segments[1:]:
        for _, _, run in segment['runs']:
            run.text = ''
    if len(replacement_lines) > 1 and red_segments:
        try:
            first_run = red_segments[0]['runs'][0][2]
            paragraph = first_run.element.getparent()
            from docx.oxml import OxmlElement
            for line in replacement_lines[1:]:
                if line.strip():
                    br = OxmlElement('w:br')
                    first_run.element.append(br)
                    new_run = paragraph.add_run(line.strip())
                    new_run.font.color.rgb = RGBColor(0, 0, 0)
        except Exception:
            if red_segments and red_segments[0]['runs']:
                first_run = red_segments[0]['runs'][0][2]
                first_run.text = ' '.join(replacement_lines)
                first_run.font.color.rgb = RGBColor(0, 0, 0)
    return replacements_made

def replace_single_segment(segment, replacement_text):
    if not segment['runs']:
        return False
    first_run = segment['runs'][0][2]
    first_run.text = replacement_text
    first_run.font.color.rgb = RGBColor(0, 0, 0)
    for _, _, run in segment['runs'][1:]:
        run.text = ''
    return True

def replace_red_text_in_cell(cell, replacement_text):
    red_segments = extract_red_text_segments(cell)
    if not red_segments:
        return 0
    return replace_all_red_segments(red_segments, replacement_text)

# ============================================================================
# Specialized handlers (vehicle, attendance, management, operator) with fixes
# ============================================================================

def handle_australian_company_number(row, company_numbers):
    replacements_made = 0
    for i, digit in enumerate(company_numbers):
        cell_idx = i + 1
        if cell_idx < len(row.cells):
            cell = row.cells[cell_idx]
            if has_red_text(cell):
                cell_replacements = replace_red_text_in_cell(cell, str(digit))
                replacements_made += cell_replacements
                print(f"      -> Placed digit '{digit}' in cell {cell_idx + 1}")
    return replacements_made

def handle_vehicle_registration_table(table, flat_json):
    """
    Stronger header normalization + substring matching for long headers.
    Keeps existing behavior but reduces 'No mapping found' by using normalized substring matching.
    """
    replacements_made = 0

    # Build candidate vehicle_section similar to prior logic
    vehicle_section = None
    # Prefer keys explicitly mentioning 'registration' or 'vehicle'
    candidates = [(k, v) for k, v in flat_json.items() if 'registration' in k.lower() or 'vehicle' in k.lower()]
    if candidates:
        # prefer the one with longest key match (likely most specific)
        candidates.sort(key=lambda kv: -len(kv[0]))
        vehicle_section = candidates[0][1]

    # fallback: collect flattened keys that look like vehicle columns
    if vehicle_section is None:
        potential_columns = {}
        for key, value in flat_json.items():
            lk = key.lower()
            if any(col_name in lk for col_name in ["registration number", "sub-contractor", "weight verification", "rfs suspension", "trip records", "fault recording", "fault repair", "daily checks", "roadworthiness"]):
                if "." in key:
                    column_name = key.split(".")[-1]
                else:
                    column_name = key
                potential_columns[column_name] = value
        if potential_columns:
            vehicle_section = potential_columns
            print(f"    βœ… Found vehicle data from flattened keys: {list(vehicle_section.keys())}")

    if not vehicle_section:
        print(f"    ❌ Vehicle registration data not found in JSON")
        return 0

    # Normalize vehicle_section into dict of column_label -> list/value
    if isinstance(vehicle_section, list):
        # if list of dicts, pivot
        if vehicle_section and isinstance(vehicle_section[0], dict):
            flattened = {}
            for entry in vehicle_section:
                for k, v in entry.items():
                    flattened.setdefault(k, []).append(v)
            vehicle_section = flattened
        else:
            # can't interpret, bail
            vehicle_section = {}

    if not isinstance(vehicle_section, dict):
        try:
            vehicle_section = dict(vehicle_section)
        except Exception:
            vehicle_section = {}

    print(f"    βœ… Found vehicle registration data with {len(vehicle_section)} columns")

    # Find header row (look for registration + number or reg no)
    header_row_idx = -1
    header_row = None
    for row_idx, row in enumerate(table.rows):
        row_text = " ".join(get_clean_text(cell).lower() for cell in row.cells)
        if ("registration" in row_text and "number" in row_text) or "reg no" in row_text or "registration no" in row_text:
            header_row_idx = row_idx
            header_row = row
            break

    if header_row_idx == -1:
        print(f"    ❌ Could not find header row in vehicle table")
        return 0

    print(f"    βœ… Found header row at index {header_row_idx}")

    # Build master labels from vehicle_section keys
    master_labels = {}
    for orig_key in vehicle_section.keys():
        norm = normalize_header_text(str(orig_key))
        if norm:
            # if there is collision, prefer longer orig_key (more specific)
            if norm in master_labels:
                if len(orig_key) > len(master_labels[norm]):
                    master_labels[norm] = orig_key
            else:
                master_labels[norm] = orig_key

    # Map header cells using normalized token overlap + substring fallback
    column_mapping = {}
    for col_idx, cell in enumerate(header_row.cells):
        header_text = get_clean_text(cell).strip()
        if not header_text:
            continue
        header_key = header_text.strip().lower()
        if header_key in {"no", "no.", "#"}:
            continue

        norm_header = normalize_header_text(header_text)
        best_match = None
        best_score = 0.0

        # exact normalized match
        if norm_header in master_labels:
            best_match = master_labels[norm_header]
            best_score = 1.0
        else:
            # token overlap
            header_tokens = set(t for t in norm_header.split() if len(t) > 2)
            for norm_key, orig_label in master_labels.items():
                key_tokens = set(t for t in norm_key.split() if len(t) > 2)
                if not key_tokens:
                    continue
                common = header_tokens.intersection(key_tokens)
                if common:
                    score = len(common) / max(1, len(header_tokens.union(key_tokens)))
                else:
                    # substring fallback on normalized strings
                    if norm_header in norm_key or norm_key in norm_header:
                        score = min(len(norm_header), len(norm_key)) / max(len(norm_header), len(norm_key))
                    else:
                        score = 0.0
                if score > best_score:
                    best_score = score
                    best_match = orig_label

            # additional heuristic: if header contains 'roadworthiness' and any master_labels key contains that token, accept
            if not best_match:
                for norm_key, orig_label in master_labels.items():
                    if 'roadworthiness' in norm_header and 'roadworthiness' in norm_key:
                        best_match = orig_label
                        best_score = 0.65
                        break

        if best_match and best_score >= 0.30:
            column_mapping[col_idx] = best_match
            print(f"      πŸ“Œ Column {col_idx}: '{header_text}' -> '{best_match}' (norm:'{norm_header}' score:{best_score:.2f})")
        else:
            print(f"      ⚠️ No mapping found for '{header_text}' (norm:'{norm_header}')")
            record_unmatched_header(header_text)

    if not column_mapping:
        print(f"    ❌ No column mappings found")
        return 0

    # Determine how many rows of data to populate
    max_data_rows = 0
    for json_key, data in vehicle_section.items():
        if isinstance(data, list):
            max_data_rows = max(max_data_rows, len(data))

    print(f"    πŸ“Œ Need to populate {max_data_rows} data rows")

    # Populate or add rows
    for data_row_index in range(max_data_rows):
        table_row_idx = header_row_idx + 1 + data_row_index
        if table_row_idx >= len(table.rows):
            print(f"    ⚠️ Row {table_row_idx + 1} doesn't exist, adding one")
            table.add_row()

        row = table.rows[table_row_idx]
        print(f"    πŸ“Œ Processing data row {table_row_idx + 1} (vehicle {data_row_index + 1})")
        for col_idx, json_key in column_mapping.items():
            if col_idx < len(row.cells):
                cell = row.cells[col_idx]
                column_data = vehicle_section.get(json_key, [])
                if isinstance(column_data, list) and data_row_index < len(column_data):
                    replacement_value = str(column_data[data_row_index])
                    cell_text = get_clean_text(cell)
                    if has_red_text(cell) or not cell_text.strip():
                        if not cell_text.strip():
                            cell.text = replacement_value
                            replacements_made += 1
                            print(f"      -> Added '{replacement_value}' to empty cell (col '{json_key}')")
                        else:
                            cell_replacements = replace_red_text_in_cell(cell, replacement_value)
                            replacements_made += cell_replacements
                            if cell_replacements > 0:
                                print(f"      -> Replaced red text with '{replacement_value}' (col '{json_key}')")

    return replacements_made

def handle_attendance_list_table_enhanced(table, flat_json):
    """Same as before β€” preserved behavior."""
    replacements_made = 0
    attendance_patterns = ["attendance list", "names and position titles", "attendees"]
    found_attendance_row = None
    for row_idx, row in enumerate(table.rows[:3]):
        for cell_idx, cell in enumerate(row.cells):
            cell_text = get_clean_text(cell).lower()
            if any(pattern in cell_text for pattern in attendance_patterns):
                found_attendance_row = row_idx
                print(f"    🎯 ENHANCED: Found Attendance List in row {row_idx + 1}, cell {cell_idx + 1}")
                break
        if found_attendance_row is not None:
            break
    if found_attendance_row is None:
        return 0

    attendance_value = None
    attendance_search_keys = [
        "Attendance List (Names and Position Titles).Attendance List (Names and Position Titles)",
        "Attendance List (Names and Position Titles)",
        "attendance list",
        "attendees"
    ]
    print(f"    πŸ” Searching for attendance data in JSON...")
    for search_key in attendance_search_keys:
        kv = find_matching_json_key_and_value(search_key, flat_json)
        if kv:
            attendance_value = kv[1]
            print(f"    βœ… Found attendance data with key: '{kv[0]}'")
            print(f"    πŸ“Š Raw value: {attendance_value}")
            break
    if attendance_value is None:
        print(f"    ❌ No attendance data found in JSON")
        return 0

    # Find red text candidate cell
    target_cell = None
    print(f"    πŸ” Scanning ALL cells in attendance table for red text...")
    for row_idx, row in enumerate(table.rows):
        for cell_idx, cell in enumerate(row.cells):
            if has_red_text(cell):
                red_text = ""
                for paragraph in cell.paragraphs:
                    for run in paragraph.runs:
                        if is_red(run):
                            red_text += run.text
                if red_text.strip():
                    print(f"        🎯 Found red text in row {row_idx + 1}, cell {cell_idx + 1}")
                    print(f"        πŸ“‹ Red text content: '{red_text[:60]}...'")
                    red_lower = red_text.lower()
                    if any(ind in red_lower for ind in ['manager', 'director', 'auditor', '–', '-']):
                        target_cell = cell
                        print(f"        βœ… This looks like attendance data - using this cell")
                        break
        if target_cell:
            break

    if target_cell is None:
        print(f"    ⚠️ No red text found that looks like attendance data")
        return 0

    if has_red_text(target_cell):
        print(f"    πŸ”§ Replacing red text with properly formatted attendance list...")
        if isinstance(attendance_value, list):
            attendance_list = [str(item).strip() for item in attendance_value if str(item).strip()]
        else:
            attendance_list = [str(attendance_value).strip()]
        print(f"    πŸ“ Attendance items to add:")
        for i, item in enumerate(attendance_list):
            print(f"        {i+1}. {item}")
        replacement_text = "\n".join(attendance_list)
        cell_replacements = replace_red_text_in_cell(target_cell, replacement_text)
        replacements_made += cell_replacements
        print(f"    βœ… Added {len(attendance_list)} attendance items")
        print(f"    πŸ“Š Replacements made: {cell_replacements}")
    return replacements_made

def fix_management_summary_details_column(table, flat_json):
    """Preserve behavior but prefer scoped mgmt dicts."""
    replacements_made = 0
    print(f"    🎯 FIX: Management Summary DETAILS column processing")
    table_text = ""
    for row in table.rows[:3]:
        for cell in row.cells:
            table_text += get_clean_text(cell).lower() + " "
    mgmt_types = []
    if "mass management" in table_text or "mass" in table_text:
        mgmt_types.append("Mass Management Summary")
    if "maintenance management" in table_text or "maintenance" in table_text:
        mgmt_types.append("Maintenance Management Summary")
    if "fatigue management" in table_text or "fatigue" in table_text:
        mgmt_types.append("Fatigue Management Summary")
    if not mgmt_types:
        if any("std 5" in get_clean_text(c).lower() for r in table.rows for c in r.cells):
            mgmt_types.append("Mass Management Summary")
    if not mgmt_types:
        return 0
    for mgmt_type in mgmt_types:
        print(f"    βœ… Confirmed {mgmt_type} table processing")
        mgmt_data = flat_json.get(mgmt_type)
        if not isinstance(mgmt_data, dict):
            for key in flat_json.keys():
                if mgmt_type.split()[0].lower() in key.lower() and "summary" in key.lower():
                    mgmt_data = flat_json.get(key)
                    break
        if not isinstance(mgmt_data, dict):
            print(f"    ⚠️ No JSON management dict found for {mgmt_type}, skipping this type")
            continue
        for row_idx, row in enumerate(table.rows):
            if len(row.cells) >= 2:
                standard_cell = row.cells[0]
                details_cell = row.cells[1]
                standard_text = get_clean_text(standard_cell).strip().lower()
                if "std 5" in standard_text or "verification" in standard_text:
                    if has_red_text(details_cell):
                        std_val = None
                        for candidate in ("Std 5. Verification", "Std 5 Verification", "Std 5", "Verification"):
                            std_val = mgmt_data.get(candidate)
                            if std_val is not None:
                                break
                        if std_val is None:
                            for k, v in mgmt_data.items():
                                if 'std 5' in k.lower() or 'verification' in k.lower():
                                    std_val = v
                                    break
                        if std_val is not None:
                            replacement_text = get_value_as_string(std_val, "Std 5. Verification")
                            cell_replacements = replace_red_text_in_cell(details_cell, replacement_text)
                            replacements_made += cell_replacements
                            if cell_replacements:
                                print(f"      βœ… Replaced Std 5. Verification details for {mgmt_type}")
                if "std 6" in standard_text or "internal review" in standard_text:
                    if has_red_text(details_cell):
                        std_val = None
                        for candidate in ("Std 6. Internal Review", "Std 6 Internal Review", "Std 6", "Internal Review"):
                            std_val = mgmt_data.get(candidate)
                            if std_val is not None:
                                break
                        if std_val is None:
                            for k, v in mgmt_data.items():
                                if 'std 6' in k.lower() or 'internal review' in k.lower():
                                    std_val = v
                                    break
                        if std_val is not None:
                            replacement_text = get_value_as_string(std_val, "Std 6. Internal Review")
                            cell_replacements = replace_red_text_in_cell(details_cell, replacement_text)
                            replacements_made += cell_replacements
                            if cell_replacements:
                                print(f"      βœ… Replaced Std 6. Internal Review details for {mgmt_type}")
    return replacements_made

# ============================================================================
# Canonical operator declaration fixer β€” SAFER
# ============================================================================
def fix_operator_declaration_empty_values(table, flat_json):
    replacements_made = 0
    print(f"    🎯 FIX: Operator Declaration empty values processing")
    table_context = ""
    for row in table.rows:
        for cell in row.cells:
            table_context += get_clean_text(cell).lower() + " "
    if not ("print name" in table_context and "position title" in table_context):
        return 0
    print(f"    βœ… Confirmed Operator Declaration table")

    def parse_name_and_position(value):
        if value is None:
            return None, None
        if isinstance(value, list):
            if len(value) == 0:
                return None, None
            if len(value) == 1:
                return str(value[0]).strip(), None
            # common [name, position] pattern
            first = str(value[0]).strip()
            second = str(value[1]).strip()
            if first and second:
                return first, second
            value = " ".join(str(v).strip() for v in value if str(v).strip())
        s = str(value).strip()
        if not s:
            return None, None
        parts = re.split(r'\s+[-–—]\s+|\s*,\s*|\s*\|\s*', s)
        if len(parts) >= 2:
            left = parts[0].strip()
            right = parts[1].strip()
            role_indicators = ['manager', 'auditor', 'owner', 'director', 'supervisor',
                               'coordinator', 'driver', 'operator', 'representative', 'chief']
            if any(ind in right.lower() for ind in role_indicators) or len(right.split()) <= 4:
                return left, right
            if any(ind in left.lower() for ind in role_indicators) and not any(ind in right.lower() for ind in role_indicators):
                return right, left
            return left, right
        tokens = s.split()
        if len(tokens) >= 2:
            last = tokens[-1]
            role_indicators = ['manager', 'auditor', 'owner', 'director', 'supervisor',
                               'coordinator', 'driver', 'operator', 'representative', 'chief']
            if any(ind == last.lower() for ind in role_indicators):
                return " ".join(tokens[:-1]), last
        return s, None

    for row_idx, row in enumerate(table.rows):
        if len(row.cells) >= 2:
            cell1_text = get_clean_text(row.cells[0]).strip().lower()
            cell2_text = get_clean_text(row.cells[1]).strip().lower()
            # header detection
            if "print name" in cell1_text and "position" in cell2_text:
                print(f"      πŸ“Œ Found header row at {row_idx + 1}")
                if row_idx + 1 < len(table.rows):
                    data_row = table.rows[row_idx + 1]
                    if len(data_row.cells) >= 2:
                        name_cell = data_row.cells[0]
                        position_cell = data_row.cells[1]
                        name_text = get_clean_text(name_cell).strip()
                        position_text = get_clean_text(position_cell).strip()
                        print(f"      πŸ“‹ Current values: Name='{name_text}', Position='{position_text}'")

                        # Prefer exact qualified keys first (use key-aware lookup)
                        name_kv = find_matching_json_key_and_value("Operator Declaration.Print Name", flat_json) or find_matching_json_key_and_value("Print Name", flat_json)
                        position_kv = find_matching_json_key_and_value("Operator Declaration.Position Title", flat_json) or find_matching_json_key_and_value("Position Title", flat_json)

                        name_value = name_kv[1] if name_kv else None
                        name_key = name_kv[0] if name_kv else None

                        position_value = position_kv[1] if position_kv else None
                        position_key = position_kv[0] if position_kv else None

                        # parse combined cases
                        parsed_name_from_nameval, parsed_pos_from_nameval = parse_name_and_position(name_value) if name_value is not None else (None, None)
                        parsed_name_from_posval, parsed_pos_from_posval = parse_name_and_position(position_value) if position_value is not None else (None, None)

                        final_name = None
                        final_pos = None

                        if parsed_name_from_nameval:
                            final_name = parsed_name_from_nameval
                        elif name_value is not None:
                            final_name = get_value_as_string(name_value)

                        # Position acceptance policy:
                        # - Accept position_value ONLY if matched key indicates position/title OR parsed value looks like a role
                        def looks_like_role(s: str) -> bool:
                            if not s:
                                return False
                            s = s.lower()
                            roles = ['manager', 'auditor', 'owner', 'director', 'supervisor', 'coordinator', 'driver', 'operator', 'representative', 'chief']
                            # short role descriptions or containing role token
                            if any(r in s for r in roles):
                                return True
                            # single/short token likely role (<=4 tokens)
                            if len(s.split()) <= 4 and any(c.isalpha() for c in s):
                                return True
                            return False

                        # Only use position_value if the matched key strongly indicates position/title
                        use_position = False
                        if position_kv:
                            k_lower = (position_key or "").lower()
                            if ("position" in k_lower or "title" in k_lower or "role" in k_lower):
                                use_position = True
                        # Avoid using attendance keys or attendance text as position source
                        if position_kv and ("attendance" in position_key.lower() or "attendance list" in position_key.lower() or "attendees" in position_key.lower()):
                            use_position = False

                        if use_position:
                            # choose parsed pos if available
                            if parsed_pos_from_posval:
                                final_pos = parsed_pos_from_posval
                            else:
                                final_pos = get_value_as_string(position_value) if position_value is not None else None
                        else:
                            # allow parsed position gleaned from name_value (if it looks like a role)
                            if parsed_pos_from_nameval and looks_like_role(parsed_pos_from_nameval):
                                final_pos = parsed_pos_from_nameval

                        # final normalization
                        if isinstance(final_name, list):
                            final_name = " ".join(str(x) for x in final_name).strip()
                        if isinstance(final_pos, list):
                            final_pos = " ".join(str(x) for x in final_pos).strip()
                        if isinstance(final_name, str):
                            final_name = final_name.strip()
                        if isinstance(final_pos, str):
                            final_pos = final_pos.strip()

                        def looks_like_person(name_str):
                            if not name_str:
                                return False
                            bad_phrases = ["pty ltd", "company", "farming", "p/l", "plc"]
                            low = name_str.lower()
                            if any(bp in low for bp in bad_phrases):
                                return False
                            return len(name_str) > 1 and any(c.isalpha() for c in name_str)

                        # Write name if empty or red
                        if (not name_text or has_red_text(name_cell)) and final_name and looks_like_person(final_name):
                            if has_red_text(name_cell):
                                replace_red_text_in_cell(name_cell, final_name)
                            else:
                                name_cell.text = final_name
                            replacements_made += 1
                            print(f"      βœ… Updated Print Name -> '{final_name}'")

                        # Write position if empty or red and final_pos appears role-like
                        if (not position_text or has_red_text(position_cell)) and final_pos and looks_like_role(final_pos):
                            if has_red_text(position_cell):
                                replace_red_text_in_cell(position_cell, final_pos)
                            else:
                                position_cell.text = final_pos
                            replacements_made += 1
                            print(f"      βœ… Updated Position Title -> '{final_pos}'")

                break

    if replacements_made > 0:
        try:
            setattr(table, "_processed_operator_declaration", True)
            print("    πŸ”– Marked table as processed by Operator Declaration handler")
        except Exception:
            pass

    return replacements_made

def handle_multiple_red_segments_in_cell(cell, flat_json):
    replacements_made = 0
    red_segments = extract_red_text_segments(cell)
    if not red_segments:
        return 0
    for i, segment in enumerate(red_segments):
        segment_text = segment['text'].strip()
        if segment_text:
            kv = find_matching_json_key_and_value(segment_text, flat_json)
            if kv:
                replacement_text = get_value_as_string(kv[1], segment_text)
                if replace_single_segment(segment, replacement_text):
                    replacements_made += 1
                    print(f"      βœ… Replaced segment {i+1}: '{segment_text}' -> '{replacement_text}'")
    return replacements_made

def handle_nature_business_multiline_fix(cell, flat_json):
    replacements_made = 0
    red_text = ""
    for paragraph in cell.paragraphs:
        for run in paragraph.runs:
            if is_red(run):
                red_text += run.text
    red_text = red_text.strip()
    if not red_text:
        return 0
    nature_indicators = ["transport", "logistics", "freight", "delivery", "trucking", "haulage"]
    if any(indicator in red_text.lower() for indicator in nature_indicators):
        kv = find_matching_json_key_and_value("Nature of Business", flat_json) or find_matching_json_key_and_value("Nature of the Operators Business (Summary)", flat_json)
        if kv:
            replacement_text = get_value_as_string(kv[1], "Nature of Business")
            cell_replacements = replace_red_text_in_cell(cell, replacement_text)
            replacements_made += cell_replacements
            print(f"      βœ… Fixed Nature of Business multiline content")
    return replacements_made

def handle_management_summary_fix(cell, flat_json):
    replacements_made = 0
    red_text = ""
    for paragraph in cell.paragraphs:
        for run in paragraph.runs:
            if is_red(run):
                red_text += run.text
    red_text = red_text.strip()
    if not red_text:
        return 0
    management_types = ["Mass Management Summary", "Maintenance Management Summary", "Fatigue Management Summary"]
    for mgmt_type in management_types:
        if mgmt_type in flat_json and isinstance(flat_json[mgmt_type], dict):
            mgmt_data = flat_json[mgmt_type]
            for std_key, std_value in mgmt_data.items():
                if isinstance(std_value, list) and std_value:
                    if len(red_text) > 10:
                        for item in std_value:
                            if red_text.lower() in str(item).lower() or str(item).lower() in red_text.lower():
                                replacement_text = "\n".join(str(i) for i in std_value)
                                cell_replacements = replace_red_text_in_cell(cell, replacement_text)
                                replacements_made += cell_replacements
                                print(f"      βœ… Fixed {mgmt_type} - {std_key}")
                                return replacements_made
    return replacements_made

def handle_print_accreditation_section(table, flat_json):
    replacements_made = 0
    if getattr(table, "_processed_operator_declaration", False):
        print(f"    ⏭️ Skipping Print Accreditation - this is an Operator Declaration table")
        return 0
    table_context = ""
    for row in table.rows:
        for cell in row.cells:
            table_context += get_clean_text(cell).lower() + " "
    if "operator declaration" in table_context or ("print name" in table_context and "position title" in table_context):
        print(f"    ⏭️ Skipping Print Accreditation - this is an Operator Declaration table")
        return 0
    print(f"    πŸ“‹ Processing Print Accreditation section")
    for row_idx, row in enumerate(table.rows):
        for cell_idx, cell in enumerate(row.cells):
            if has_red_text(cell):
                accreditation_fields = [
                    "(print accreditation name)",
                    "Operator name (Legal entity)",
                    "Print accreditation name"
                ]
                for field in accreditation_fields:
                    kv = find_matching_json_key_and_value(field, flat_json)
                    if kv:
                        replacement_text = get_value_as_string(kv[1], field)
                        if replacement_text.strip():
                            cell_replacements = replace_red_text_in_cell(cell, replacement_text)
                            replacements_made += cell_replacements
                            if cell_replacements > 0:
                                print(f"      βœ… Fixed accreditation: {kv[0]}")
                            break
    return replacements_made

def process_single_column_sections(cell, key_text, flat_json):
    replacements_made = 0
    if has_red_text(cell):
        red_text = ""
        for paragraph in cell.paragraphs:
            for run in paragraph.runs:
                if is_red(run):
                    red_text += run.text
        if red_text.strip():
            kv = find_matching_json_key_and_value(red_text.strip(), flat_json)
            if not kv:
                kv = find_matching_json_key_and_value(key_text, flat_json)
            if kv:
                section_replacement = get_value_as_string(kv[1], red_text.strip())
                cell_replacements = replace_red_text_in_cell(cell, section_replacement)
                replacements_made += cell_replacements
                if cell_replacements > 0:
                    print(f"      βœ… Fixed single column section: '{key_text}'")
    return replacements_made

# ============================================================================
# Main table/paragraph/heading processing (preserve logic + use new helpers)
# ============================================================================
def process_tables(document, flat_json):
    replacements_made = 0
    for table_idx, table in enumerate(document.tables):
        print(f"\nπŸ” Processing table {table_idx + 1}:")
        table_text = ""
        for row in table.rows[:3]:
            for cell in row.cells:
                table_text += get_clean_text(cell).lower() + " "

        management_summary_indicators = ["mass management", "maintenance management", "fatigue management"]
        has_management = any(indicator in table_text for indicator in management_summary_indicators)
        has_details = "details" in table_text

        if has_management and has_details:
            print(f"    πŸ“‹ Detected Management Summary table")
            summary_fixes = fix_management_summary_details_column(table, flat_json)
            replacements_made += summary_fixes

            summary_replacements = 0
            for row_idx, row in enumerate(table.rows):
                for cell_idx, cell in enumerate(row.cells):
                    if has_red_text(cell):
                        for mgmt_type in ["Mass Management Summary", "Maintenance Management Summary", "Fatigue Management Summary"]:
                            if mgmt_type.lower().replace(" summary", "") in table_text:
                                if mgmt_type in flat_json:
                                    mgmt_data = flat_json[mgmt_type]
                                    if isinstance(mgmt_data, dict):
                                        for std_key, std_value in mgmt_data.items():
                                            if isinstance(std_value, list) and len(std_value) > 0:
                                                red_text = "".join(run.text for p in cell.paragraphs for run in p.runs if is_red(run)).strip()
                                                for item in std_value:
                                                    if len(red_text) > 15 and red_text.lower() in str(item).lower():
                                                        replacement_text = "\n".join(str(i) for i in std_value)
                                                        cell_replacements = replace_red_text_in_cell(cell, replacement_text)
                                                        summary_replacements += cell_replacements
                                                        print(f"        βœ… Updated {std_key} with summary data")
                                                        break
                                break

                        if summary_replacements == 0:
                            cell_replacements = handle_management_summary_fix(cell, flat_json)
                            summary_replacements += cell_replacements

            replacements_made += summary_replacements
            continue

        # Vehicle tables detection
        vehicle_indicators = ["registration number", "sub-contractor", "weight verification", "rfs suspension", "registration"]
        indicator_count = sum(1 for indicator in vehicle_indicators if indicator in table_text)
        if indicator_count >= 2:
            print(f"    πŸš— Detected Vehicle Registration table")
            vehicle_replacements = handle_vehicle_registration_table(table, flat_json)
            replacements_made += vehicle_replacements
            continue

        # Attendance
        if "attendance list" in table_text and "names and position titles" in table_text:
            print(f"    πŸ‘₯ Detected Attendance List table")
            attendance_replacements = handle_attendance_list_table_enhanced(table, flat_json)
            replacements_made += attendance_replacements
            continue

        # Print Accreditation / Operator Declaration
        print_accreditation_indicators = ["print name", "position title"]
        indicator_count = sum(1 for indicator in print_accreditation_indicators if indicator in table_text)
        if indicator_count >= 2 or ("print name" in table_text and "position title" in table_text):
            print(f"    πŸ“‹ Detected Print Accreditation/Operator Declaration table")
            declaration_fixes = fix_operator_declaration_empty_values(table, flat_json)
            replacements_made += declaration_fixes
            if not getattr(table, "_processed_operator_declaration", False):
                print_accreditation_replacements = handle_print_accreditation_section(table, flat_json)
                replacements_made += print_accreditation_replacements
            continue

        # Regular table rows handling (preserved)
        for row_idx, row in enumerate(table.rows):
            if len(row.cells) < 1:
                continue
            key_cell = row.cells[0]
            key_text = get_clean_text(key_cell)
            if not key_text:
                continue
            print(f"  πŸ“Œ Row {row_idx + 1}: Key = '{key_text}'")
            kv = find_matching_json_key_and_value(key_text, flat_json)
            json_value = kv[1] if kv else None

            if json_value is not None:
                replacement_text = get_value_as_string(json_value, key_text)

                # ACN handling
                if ("australian company number" in key_text.lower() or "company number" in key_text.lower()) and isinstance(json_value, list):
                    cell_replacements = handle_australian_company_number(row, json_value)
                    replacements_made += cell_replacements

                # section headers
                elif ("attendance list" in key_text.lower() or "nature of" in key_text.lower()) and row_idx + 1 < len(table.rows):
                    print(f"    βœ… Section header detected, checking next row...")
                    next_row = table.rows[row_idx + 1]
                    for cell_idx, cell in enumerate(next_row.cells):
                        if has_red_text(cell):
                            print(f"    βœ… Found red text in next row, cell {cell_idx + 1}")
                            if isinstance(json_value, list):
                                section_text = "\n".join(str(item) for item in json_value)
                            else:
                                section_text = replacement_text
                            cell_replacements = replace_red_text_in_cell(cell, section_text)
                            replacements_made += cell_replacements
                            if cell_replacements > 0:
                                print(f"    -> Replaced section content")

                # single column
                elif len(row.cells) == 1 or (len(row.cells) > 1 and not any(has_red_text(row.cells[i]) for i in range(1, len(row.cells)))):
                    if has_red_text(key_cell):
                        cell_replacements = process_single_column_sections(key_cell, key_text, flat_json)
                        replacements_made += cell_replacements

                # key-value pairs
                else:
                    for cell_idx in range(1, len(row.cells)):
                        value_cell = row.cells[cell_idx]
                        if has_red_text(value_cell):
                            print(f"    βœ… Found red text in column {cell_idx + 1}")
                            cell_replacements = replace_red_text_in_cell(value_cell, replacement_text)
                            replacements_made += cell_replacements

            else:
                # fallback single cell red-text key
                if len(row.cells) == 1 and has_red_text(key_cell):
                    red_text = ""
                    for paragraph in key_cell.paragraphs:
                        for run in paragraph.runs:
                            if is_red(run):
                                red_text += run.text
                    if red_text.strip():
                        kv2 = find_matching_json_key_and_value(red_text.strip(), flat_json)
                        if kv2:
                            section_replacement = get_value_as_string(kv2[1], red_text.strip())
                            cell_replacements = replace_red_text_in_cell(key_cell, section_replacement)
                            replacements_made += cell_replacements

                # attempt multiple red-segments or surgical fixes
                for cell_idx in range(len(row.cells)):
                    cell = row.cells[cell_idx]
                    if has_red_text(cell):
                        cell_replacements = handle_multiple_red_segments_in_cell(cell, flat_json)
                        replacements_made += cell_replacements
                        if cell_replacements == 0:
                            surgical_fix = handle_nature_business_multiline_fix(cell, flat_json)
                            replacements_made += surgical_fix
                        if cell_replacements == 0:
                            management_summary_fix = handle_management_summary_fix(cell, flat_json)
                            replacements_made += management_summary_fix

    # Final operator/auditor declaration check on last few tables
    print(f"\n🎯 Final check for Declaration tables...")
    for table in document.tables[-3:]:
        if len(table.rows) <= 4:
            if getattr(table, "_processed_operator_declaration", False):
                print(f"    ⏭️ Skipping - already processed by operator declaration handler")
                continue
            declaration_fix = fix_operator_declaration_empty_values(table, flat_json)
            replacements_made += declaration_fix

    return replacements_made

def process_paragraphs(document, flat_json):
    replacements_made = 0
    print(f"\nπŸ” Processing paragraphs:")
    for para_idx, paragraph in enumerate(document.paragraphs):
        red_runs = [run for run in paragraph.runs if is_red(run) and run.text.strip()]
        if red_runs:
            red_text_only = "".join(run.text for run in red_runs).strip()
            print(f"  πŸ“Œ Paragraph {para_idx + 1}: Found red text: '{red_text_only}'")

            kv = find_matching_json_key_and_value(red_text_only, flat_json)
            json_value = kv[1] if kv else None

            if json_value is None:
                if "AUDITOR SIGNATURE" in red_text_only.upper() or "DATE" in red_text_only.upper():
                    kv = find_matching_json_key_and_value("auditor signature", flat_json)
                elif "OPERATOR SIGNATURE" in red_text_only.upper():
                    kv = find_matching_json_key_and_value("operator signature", flat_json)
                json_value = kv[1] if kv else None

            if json_value is not None:
                replacement_text = get_value_as_string(json_value)
                print(f"    βœ… Replacing red text with: '{replacement_text}'")
                red_runs[0].text = replacement_text
                red_runs[0].font.color.rgb = RGBColor(0, 0, 0)
                for run in red_runs[1:]:
                    run.text = ''
                replacements_made += 1
    return replacements_made

def process_headings(document, flat_json):
    replacements_made = 0
    print(f"\nπŸ” Processing headings:")
    paragraphs = document.paragraphs
    for para_idx, paragraph in enumerate(paragraphs):
        paragraph_text = paragraph.text.strip()
        if not paragraph_text:
            continue
        matched_heading = None
        for category, patterns in HEADING_PATTERNS.items():
            for pattern in patterns:
                if re.search(pattern, paragraph_text, re.IGNORECASE):
                    matched_heading = pattern
                    break
            if matched_heading:
                break
        if matched_heading:
            print(f"  πŸ“Œ Found heading at paragraph {para_idx + 1}: '{paragraph_text}'")
            if has_red_text_in_paragraph(paragraph):
                print(f"    πŸ”΄ Found red text in heading itself")
                heading_replacements = process_red_text_in_paragraph(paragraph, paragraph_text, flat_json)
                replacements_made += heading_replacements
            for next_para_offset in range(1, 6):
                next_para_idx = para_idx + next_para_offset
                if next_para_idx >= len(paragraphs):
                    break
                next_paragraph = paragraphs[next_para_idx]
                next_text = next_paragraph.text.strip()
                if not next_text:
                    continue
                is_another_heading = False
                for category, patterns in HEADING_PATTERNS.items():
                    for pattern in patterns:
                        if re.search(pattern, next_text, re.IGNORECASE):
                            is_another_heading = True
                            break
                    if is_another_heading:
                        break
                if is_another_heading:
                    break
                if has_red_text_in_paragraph(next_paragraph):
                    print(f"    πŸ”΄ Found red text in paragraph {next_para_idx + 1} after heading")
                    context_replacements = process_red_text_in_paragraph(
                        next_paragraph,
                        paragraph_text,
                        flat_json
                    )
                    replacements_made += context_replacements
    return replacements_made

def process_red_text_in_paragraph(paragraph, context_text, flat_json):
    replacements_made = 0
    red_text_segments = []
    for run in paragraph.runs:
        if is_red(run) and run.text.strip():
            red_text_segments.append(run.text.strip())
    if not red_text_segments:
        return 0
    combined_red_text = " ".join(red_text_segments).strip()
    print(f"      πŸ” Red text found: '{combined_red_text}'")
    kv = find_matching_json_key_and_value(combined_red_text, flat_json)
    json_value = kv[1] if kv else None

    if json_value is None:
        if "NHVAS APPROVED AUDITOR" in context_text.upper():
            auditor_fields = ["auditor name", "auditor", "nhvas auditor", "approved auditor", "print name"]
            for field in auditor_fields:
                kv = find_matching_json_key_and_value(field, flat_json)
                if kv:
                    print(f"      βœ… Found auditor match with field: '{kv[0]}'")
                    json_value = kv[1]
                    break
        elif "OPERATOR DECLARATION" in context_text.upper():
            operator_fields = ["operator name", "operator", "company name", "organisation name", "print name"]
            for field in operator_fields:
                kv = find_matching_json_key_and_value(field, flat_json)
                if kv:
                    print(f"      βœ… Found operator match with field: '{kv[0]}'")
                    json_value = kv[1]
                    break

    if json_value is None:
        context_queries = [f"{context_text} {combined_red_text}", combined_red_text, context_text]
        for query in context_queries:
            kv = find_matching_json_key_and_value(query, flat_json)
            if kv:
                print(f"      βœ… Found match with combined query -> {kv[0]}")
                json_value = kv[1]
                break

    if json_value is not None:
        replacement_text = get_value_as_string(json_value, combined_red_text)
        red_runs = [run for run in paragraph.runs if is_red(run) and run.text.strip()]
        if red_runs:
            red_runs[0].text = replacement_text
            red_runs[0].font.color.rgb = RGBColor(0, 0, 0)
            for run in red_runs[1:]:
                run.text = ''
            replacements_made = 1
            print(f"      βœ… Replaced with: '{replacement_text}'")
    else:
        print(f"      ❌ No match found for red text: '{combined_red_text}'")

    return replacements_made

# ============================================================================
# Orchestrator
# ============================================================================
def process_hf(json_file, docx_file, output_file):
    try:
        if hasattr(json_file, "read"):
            json_data = json.load(json_file)
        else:
            with open(json_file, 'r', encoding='utf-8') as f:
                json_data = json.load(f)

        flat_json = flatten_json(json_data)
        print("πŸ“„ Available JSON keys (sample):")
        for i, (key, value) in enumerate(sorted(flat_json.items())):
            if i < 10:
                print(f"  - {key}: {value}")
        print(f"  ... and {len(flat_json) - 10} more keys\n")

        if hasattr(docx_file, "read"):
            doc = Document(docx_file)
        else:
            doc = Document(docx_file)

        print("πŸš€ Starting comprehensive document processing...")
        table_replacements = process_tables(doc, flat_json)
        paragraph_replacements = process_paragraphs(doc, flat_json)
        heading_replacements = process_headings(doc, flat_json)
        total_replacements = table_replacements + paragraph_replacements + heading_replacements

        # Save unmatched headers for iterative improvement
        if _unmatched_headers:
            try:
                tmp_path = "/tmp/unmatched_headers.json"
                with open(tmp_path, 'w', encoding='utf-8') as f:
                    json.dump(_unmatched_headers, f, indent=2, ensure_ascii=False)
                print(f"βœ… Unmatched headers saved to {tmp_path}")
            except Exception as e:
                print(f"⚠️ Could not save unmatched headers: {e}")

        if hasattr(output_file, "write"):
            doc.save(output_file)
        else:
            doc.save(output_file)

        print(f"\nβœ… Document saved as: {output_file}")
        print(f"βœ… Total replacements: {total_replacements}")
        print(f"   πŸ“Š Tables: {table_replacements}")
        print(f"   πŸ“ Paragraphs: {paragraph_replacements}")
        print(f"   πŸ“‹ Headings: {heading_replacements}")
        print(f"πŸŽ‰ Processing complete!")

    except FileNotFoundError as e:
        print(f"❌ File not found: {e}")
    except Exception as e:
        print(f"❌ Error: {e}")
        import traceback
        traceback.print_exc()

if __name__ == "__main__":
    import sys
    if len(sys.argv) != 4:
        print("Usage: python pipeline.py <input_docx> <updated_json> <output_docx>")
        exit(1)
    docx_path = sys.argv[1]
    json_path = sys.argv[2]
    output_path = sys.argv[3]
    process_hf(json_path, docx_path, output_path)