Spaces:
Running
Running
File size: 65,141 Bytes
e8b46b5 b93e8d9 c38c9d4 b93e8d9 e8b46b5 c38c9d4 e8b46b5 c38c9d4 e8b46b5 b93e8d9 e8b46b5 b93e8d9 e8b46b5 c38c9d4 e8b46b5 5b2b3a8 e8b46b5 c38c9d4 e8b46b5 5b2b3a8 e8b46b5 b93e8d9 c38c9d4 e8b46b5 5b2b3a8 e8b46b5 5b2b3a8 e8b46b5 5b2b3a8 c38c9d4 e8b46b5 c38c9d4 5b2b3a8 c38c9d4 5b2b3a8 e8b46b5 412e2ed 5b2b3a8 e8b46b5 b93e8d9 e8b46b5 c38c9d4 b93e8d9 c38c9d4 b93e8d9 c38c9d4 5b2b3a8 c38c9d4 b93e8d9 c38c9d4 5b2b3a8 c38c9d4 b93e8d9 c38c9d4 b93e8d9 c38c9d4 b93e8d9 5efc8a5 b93e8d9 c38c9d4 b93e8d9 c38c9d4 b93e8d9 c38c9d4 076f0d9 8df4ecc 076f0d9 8df4ecc 076f0d9 b93e8d9 076f0d9 22b9cc9 76ff551 076f0d9 76ff551 076f0d9 22b9cc9 76ff551 076f0d9 b93e8d9 76ff551 22b9cc9 76ff551 2c767ad 76ff551 2c767ad 076f0d9 b93e8d9 54d9a7f 428b626 a5282db 428b626 2c767ad 428b626 a5282db 428b626 54d9a7f 428b626 54d9a7f b93e8d9 2c767ad b93e8d9 2c767ad 8df4ecc 3894cf3 b93e8d9 3894cf3 b93e8d9 3894cf3 e95e088 3894cf3 c0e794c 3894cf3 f144bc7 e95e088 f144bc7 e95e088 f144bc7 c0e794c 3894cf3 c0e794c 3894cf3 e8b46b5 c0e794c e8b46b5 c0e794c c38c9d4 364a368 c0e794c 364a368 3894cf3 c0e794c ae4477c d4200b4 364a368 e8b46b5 c0e794c c38c9d4 c0e794c 8df4ecc 076f0d9 8df4ecc c0e794c c38c9d4 c0e794c c38c9d4 c0e794c e8b46b5 7755a4a e8b46b5 c0e794c e8b46b5 c38c9d4 c0e794c c38c9d4 c0e794c c38c9d4 e8b46b5 c38c9d4 e8b46b5 c0e794c c38c9d4 c0e794c c38c9d4 c0e794c c38c9d4 c0e794c e8b46b5 c0e794c c38c9d4 c0e794c e8b46b5 c38c9d4 e8b46b5 c0e794c c38c9d4 8df4ecc c0e794c 8df4ecc c38c9d4 c0e794c e8b46b5 c0e794c e8b46b5 7755a4a e8b46b5 c38c9d4 7755a4a c38c9d4 7755a4a c38c9d4 7755a4a ddb37e5 c38c9d4 ddb37e5 c38c9d4 c0e794c c38c9d4 c0e794c c38c9d4 c0e794c c38c9d4 c0e794c c38c9d4 c0e794c c38c9d4 c0e794c c38c9d4 c0e794c c38c9d4 c0e794c c38c9d4 c0e794c c38c9d4 c0e794c c38c9d4 7755a4a 6c1e37b c0e794c 6c1e37b c0e794c 6c1e37b f1c869a 6c1e37b f1c869a 6c1e37b c0e794c 6c1e37b f1c869a 6c1e37b c0e794c 6c1e37b c0e794c 6c1e37b c0e794c 6c1e37b c0e794c 6c1e37b 5b2b3a8 c0e794c e8b46b5 7755a4a 5b2b3a8 7755a4a c38c9d4 e8b46b5 5b2b3a8 e8b46b5 5b2b3a8 e8b46b5 7755a4a 5b2b3a8 e8b46b5 c0e794c 7755a4a e8b46b5 c38c9d4 7755a4a c0e794c 6c1e37b e8b46b5 7755a4a 5b2b3a8 7755a4a 5b2b3a8 7755a4a c38c9d4 6c1e37b 412e2ed e8b46b5 a6e31ac c38c9d4 a6e31ac 7755a4a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 |
import json
from docx import Document
from docx.shared import RGBColor
import re
# Heading patterns for document structure detection
HEADING_PATTERNS = {
"main": [
r"NHVAS\s+Audit\s+Summary\s+Report",
r"NATIONAL\s+HEAVY\s+VEHICLE\s+ACCREDITATION\s+AUDIT\s+SUMMARY\s+REPORT",
r"NHVAS\s+AUDIT\s+SUMMARY\s+REPORT"
],
"sub": [
r"AUDIT\s+OBSERVATIONS\s+AND\s+COMMENTS",
r"MAINTENANCE\s+MANAGEMENT",
r"MASS\s+MANAGEMENT",
r"FATIGUE\s+MANAGEMENT",
r"Fatigue\s+Management\s+Summary\s+of\s+Audit\s+findings",
r"MAINTENANCE\s+MANAGEMENT\s+SUMMARY\s+OF\s+AUDIT\s+FINDINGS",
r"MASS\s+MANAGEMENT\s+SUMMARY\s+OF\s+AUDIT\s+FINDINGS",
r"Vehicle\s+Registration\s+Numbers\s+of\s+Records\s+Examined",
r"CORRECTIVE\s+ACTION\s+REQUEST\s+\(CAR\)",
r"NHVAS\s+APPROVED\s+AUDITOR\s+DECLARATION",
r"Operator\s+Declaration",
r"Operator\s+Information",
r"Driver\s*/\s*Scheduler\s+Records\s+Examined"
]
}
# ============================================================================
# UTILITY FUNCTIONS
# ============================================================================
def load_json(filepath):
with open(filepath, 'r') as file:
return json.load(file)
def flatten_json(y, prefix=''):
out = {}
for key, val in y.items():
new_key = f"{prefix}.{key}" if prefix else key
if isinstance(val, dict):
out.update(flatten_json(val, new_key))
else:
out[new_key] = val
out[key] = val
return out
def is_red(run):
color = run.font.color
return color and (color.rgb == RGBColor(255, 0, 0) or getattr(color, "theme_color", None) == 1)
def get_value_as_string(value, field_name=""):
if isinstance(value, list):
if len(value) == 0:
return ""
elif len(value) == 1:
return str(value[0])
else:
if "australian company number" in field_name.lower() or "company number" in field_name.lower():
return value
else:
return " ".join(str(v) for v in value)
else:
return str(value)
def get_clean_text(cell):
text = ""
for paragraph in cell.paragraphs:
for run in paragraph.runs:
text += run.text
return text.strip()
def has_red_text(cell):
for paragraph in cell.paragraphs:
for run in paragraph.runs:
if is_red(run) and run.text.strip():
return True
return False
def has_red_text_in_paragraph(paragraph):
for run in paragraph.runs:
if is_red(run) and run.text.strip():
return True
return False
# ============================================================================
# JSON MATCHING FUNCTIONS
# ============================================================================
def find_matching_json_value(field_name, flat_json):
"""Find matching value in JSON with multiple strategies"""
field_name = field_name.strip()
# Try exact match first
if field_name in flat_json:
print(f" β
Direct match found for key '{field_name}'")
return flat_json[field_name]
# Try case-insensitive exact match
for key, value in flat_json.items():
if key.lower() == field_name.lower():
print(f" β
Case-insensitive match found for key '{field_name}' with JSON key '{key}'")
return value
# Better Print Name detection for operator vs auditor
if field_name.lower().strip() == "print name":
operator_keys = [k for k in flat_json.keys() if "operator" in k.lower() and "print name" in k.lower()]
auditor_keys = [k for k in flat_json.keys() if "auditor" in k.lower() and ("print name" in k.lower() or "name" in k.lower())]
if operator_keys:
print(f" β
Operator Print Name match: '{field_name}' -> '{operator_keys[0]}'")
return flat_json[operator_keys[0]]
elif auditor_keys:
print(f" β
Auditor Name match: '{field_name}' -> '{auditor_keys[0]}'")
return flat_json[auditor_keys[0]]
# Try suffix matching (for nested keys like "section.field")
for key, value in flat_json.items():
if '.' in key and key.split('.')[-1].lower() == field_name.lower():
print(f" β
Suffix match found for key '{field_name}' with JSON key '{key}'")
return value
# Try partial matching - remove parentheses and special chars
clean_field = re.sub(r'[^\w\s]', ' ', field_name.lower()).strip()
clean_field = re.sub(r'\s+', ' ', clean_field)
for key, value in flat_json.items():
clean_key = re.sub(r'[^\w\s]', ' ', key.lower()).strip()
clean_key = re.sub(r'\s+', ' ', clean_key)
if clean_field == clean_key:
print(f" β
Clean match found for key '{field_name}' with JSON key '{key}'")
return value
# Enhanced fuzzy matching with better scoring
field_words = set(word.lower() for word in re.findall(r'\b\w+\b', field_name) if len(word) > 2)
if not field_words:
return None
best_match = None
best_score = 0
best_key = None
for key, value in flat_json.items():
key_words = set(word.lower() for word in re.findall(r'\b\w+\b', key) if len(word) > 2)
if not key_words:
continue
# Calculate similarity score
common_words = field_words.intersection(key_words)
if common_words:
# Use Jaccard similarity: intersection / union
similarity = len(common_words) / len(field_words.union(key_words))
# Bonus for high word coverage in field_name
coverage = len(common_words) / len(field_words)
final_score = (similarity * 0.6) + (coverage * 0.4)
if final_score > best_score:
best_score = final_score
best_match = value
best_key = key
if best_match and best_score >= 0.25:
print(f" β
Fuzzy match found for key '{field_name}' with JSON key '{best_key}' (score: {best_score:.2f})")
return best_match
print(f" β No match found for '{field_name}'")
return None
# ============================================================================
# RED TEXT PROCESSING FUNCTIONS
# ============================================================================
def extract_red_text_segments(cell):
"""Extract red text segments from a cell"""
red_segments = []
for para_idx, paragraph in enumerate(cell.paragraphs):
current_segment = ""
segment_runs = []
for run_idx, run in enumerate(paragraph.runs):
if is_red(run):
if run.text:
current_segment += run.text
segment_runs.append((para_idx, run_idx, run))
else:
# End of current red segment
if segment_runs:
red_segments.append({
'text': current_segment,
'runs': segment_runs.copy(),
'paragraph_idx': para_idx
})
current_segment = ""
segment_runs = []
# Handle segment at end of paragraph
if segment_runs:
red_segments.append({
'text': current_segment,
'runs': segment_runs.copy(),
'paragraph_idx': para_idx
})
return red_segments
def replace_all_red_segments(red_segments, replacement_text):
"""Replace all red segments with replacement text"""
if not red_segments:
return 0
if '\n' in replacement_text:
replacement_lines = replacement_text.split('\n')
else:
replacement_lines = [replacement_text]
replacements_made = 0
if red_segments and replacement_lines:
first_segment = red_segments[0]
if first_segment['runs']:
first_run = first_segment['runs'][0][2]
first_run.text = replacement_lines[0]
first_run.font.color.rgb = RGBColor(0, 0, 0)
replacements_made = 1
for _, _, run in first_segment['runs'][1:]:
run.text = ''
for segment in red_segments[1:]:
for _, _, run in segment['runs']:
run.text = ''
if len(replacement_lines) > 1 and red_segments:
try:
first_run = red_segments[0]['runs'][0][2]
paragraph = first_run.element.getparent()
for line in replacement_lines[1:]:
if line.strip():
from docx.oxml import OxmlElement
br = OxmlElement('w:br')
first_run.element.append(br)
new_run = paragraph.add_run(line.strip())
new_run.font.color.rgb = RGBColor(0, 0, 0)
except:
if red_segments and red_segments[0]['runs']:
first_run = red_segments[0]['runs'][0][2]
first_run.text = ' '.join(replacement_lines)
first_run.font.color.rgb = RGBColor(0, 0, 0)
return replacements_made
def replace_single_segment(segment, replacement_text):
"""Replace a single red text segment"""
if not segment['runs']:
return False
first_run = segment['runs'][0][2]
first_run.text = replacement_text
first_run.font.color.rgb = RGBColor(0, 0, 0)
for _, _, run in segment['runs'][1:]:
run.text = ''
return True
def replace_red_text_in_cell(cell, replacement_text):
"""Replace red text in a cell with replacement text"""
red_segments = extract_red_text_segments(cell)
if not red_segments:
return 0
return replace_all_red_segments(red_segments, replacement_text)
# ============================================================================
# SPECIALIZED TABLE HANDLERS
# ============================================================================
def handle_australian_company_number(row, company_numbers):
"""Handle Australian Company Number digit placement"""
replacements_made = 0
for i, digit in enumerate(company_numbers):
cell_idx = i + 1
if cell_idx < len(row.cells):
cell = row.cells[cell_idx]
if has_red_text(cell):
cell_replacements = replace_red_text_in_cell(cell, str(digit))
replacements_made += cell_replacements
print(f" -> Placed digit '{digit}' in cell {cell_idx + 1}")
return replacements_made
def handle_vehicle_registration_table(table, flat_json):
"""Handle vehicle registration table data replacement"""
replacements_made = 0
# Try to find vehicle registration data
vehicle_section = None
for key, value in flat_json.items():
if "vehicle registration numbers of records examined" in key.lower():
if isinstance(value, dict):
vehicle_section = value
print(f" β
Found vehicle data in key: '{key}'")
break
if not vehicle_section:
potential_columns = {}
for key, value in flat_json.items():
if any(col_name in key.lower() for col_name in ["registration number", "sub-contractor", "weight verification", "rfs suspension"]):
if "." in key:
column_name = key.split(".")[-1]
else:
column_name = key
potential_columns[column_name] = value
if potential_columns:
vehicle_section = potential_columns
print(f" β
Found vehicle data from flattened keys: {list(vehicle_section.keys())}")
else:
print(f" β Vehicle registration data not found in JSON")
return 0
print(f" β
Found vehicle registration data with {len(vehicle_section)} columns")
# Find header row
header_row_idx = -1
header_row = None
for row_idx, row in enumerate(table.rows):
row_text = "".join(get_clean_text(cell).lower() for cell in row.cells)
if "registration" in row_text and "number" in row_text:
header_row_idx = row_idx
header_row = row
break
if header_row_idx == -1:
print(f" β Could not find header row in vehicle table")
return 0
print(f" β
Found header row at index {header_row_idx}")
# Enhanced column mapping
column_mapping = {}
for col_idx, cell in enumerate(header_row.cells):
header_text = get_clean_text(cell).strip()
if not header_text or header_text.lower() == "no.":
continue
best_match = None
best_score = 0
normalized_header = header_text.lower().replace("(", " (").replace(")", ") ").strip()
for json_key in vehicle_section.keys():
normalized_json = json_key.lower().strip()
if normalized_header == normalized_json:
best_match = json_key
best_score = 1.0
break
header_words = set(word.lower() for word in normalized_header.split() if len(word) > 2)
json_words = set(word.lower() for word in normalized_json.split() if len(word) > 2)
if header_words and json_words:
common_words = header_words.intersection(json_words)
score = len(common_words) / max(len(header_words), len(json_words))
if score > best_score and score >= 0.3:
best_score = score
best_match = json_key
header_clean = normalized_header.replace(" ", "").replace("-", "").replace("(", "").replace(")", "")
json_clean = normalized_json.replace(" ", "").replace("-", "").replace("(", "").replace(")", "")
if header_clean in json_clean or json_clean in header_clean:
if len(header_clean) > 5 and len(json_clean) > 5:
substring_score = min(len(header_clean), len(json_clean)) / max(len(header_clean), len(json_clean))
if substring_score > best_score and substring_score >= 0.6:
best_score = substring_score
best_match = json_key
if best_match:
column_mapping[col_idx] = best_match
print(f" π Column {col_idx + 1} ('{header_text}') -> '{best_match}' (score: {best_score:.2f})")
if not column_mapping:
print(f" β No column mappings found")
return 0
# Determine data rows needed
max_data_rows = 0
for json_key, data in vehicle_section.items():
if isinstance(data, list):
max_data_rows = max(max_data_rows, len(data))
print(f" π Need to populate {max_data_rows} data rows")
# Process data rows
for data_row_index in range(max_data_rows):
table_row_idx = header_row_idx + 1 + data_row_index
if table_row_idx >= len(table.rows):
print(f" β οΈ Row {table_row_idx + 1} doesn't exist - table only has {len(table.rows)} rows")
print(f" β Adding new row for vehicle {data_row_index + 1}")
new_row = table.add_row()
print(f" β
Successfully added row {len(table.rows)} to the table")
row = table.rows[table_row_idx]
print(f" π Processing data row {table_row_idx + 1} (vehicle {data_row_index + 1})")
for col_idx, json_key in column_mapping.items():
if col_idx < len(row.cells):
cell = row.cells[col_idx]
column_data = vehicle_section.get(json_key, [])
if isinstance(column_data, list) and data_row_index < len(column_data):
replacement_value = str(column_data[data_row_index])
cell_text = get_clean_text(cell)
if has_red_text(cell) or not cell_text.strip():
if not cell_text.strip():
cell.text = replacement_value
replacements_made += 1
print(f" -> Added '{replacement_value}' to empty cell (column '{json_key}')")
else:
cell_replacements = replace_red_text_in_cell(cell, replacement_value)
replacements_made += cell_replacements
if cell_replacements > 0:
print(f" -> Replaced red text with '{replacement_value}' (column '{json_key}')")
return replacements_made
def handle_attendance_list_table_enhanced(table, flat_json):
"""Enhanced Attendance List processing with better detection"""
replacements_made = 0
# Check multiple patterns for attendance list
attendance_patterns = [
"attendance list",
"names and position titles",
"attendees"
]
# Scan all cells in the first few rows for attendance list indicators
found_attendance_row = None
for row_idx, row in enumerate(table.rows[:3]): # Check first 3 rows
for cell_idx, cell in enumerate(row.cells):
cell_text = get_clean_text(cell).lower()
# Check if this cell contains attendance list header
if any(pattern in cell_text for pattern in attendance_patterns):
found_attendance_row = row_idx
print(f" π― ENHANCED: Found Attendance List in row {row_idx + 1}, cell {cell_idx + 1}")
break
if found_attendance_row is not None:
break
if found_attendance_row is None:
return 0
# Look for attendance data in JSON
attendance_value = None
attendance_search_keys = [
"Attendance List (Names and Position Titles).Attendance List (Names and Position Titles)",
"Attendance List (Names and Position Titles)",
"attendance list",
"attendees"
]
print(f" π Searching for attendance data in JSON...")
for search_key in attendance_search_keys:
attendance_value = find_matching_json_value(search_key, flat_json)
if attendance_value is not None:
print(f" β
Found attendance data with key: '{search_key}'")
print(f" π Raw value: {attendance_value}")
break
if attendance_value is None:
print(f" β No attendance data found in JSON")
return 0
# Look for red text in ALL cells of the table
target_cell = None
print(f" π Scanning ALL cells in attendance table for red text...")
for row_idx, row in enumerate(table.rows):
for cell_idx, cell in enumerate(row.cells):
if has_red_text(cell):
print(f" π― Found red text in row {row_idx + 1}, cell {cell_idx + 1}")
# Get the red text to see if it looks like attendance data
red_text = ""
for paragraph in cell.paragraphs:
for run in paragraph.runs:
if is_red(run):
red_text += run.text
print(f" π Red text content: '{red_text[:50]}...'")
# Check if this red text looks like attendance data (contains names/manager/etc)
red_text_lower = red_text.lower()
if any(indicator in red_text_lower for indicator in ['manager', 'herbig', 'palin', 'β', '-']):
target_cell = cell
print(f" β
This looks like attendance data - using this cell")
break
if target_cell is not None:
break
# If no red text found that looks like attendance data, return
if target_cell is None:
print(f" β οΈ No red text found that looks like attendance data")
return 0
# Replace red text with properly formatted attendance list
if has_red_text(target_cell):
print(f" π§ Replacing red text with properly formatted attendance list...")
# Ensure attendance_value is a list
if isinstance(attendance_value, list):
attendance_list = [str(item).strip() for item in attendance_value if str(item).strip()]
else:
attendance_list = [str(attendance_value).strip()]
print(f" π Attendance items to add:")
for i, item in enumerate(attendance_list):
print(f" {i+1}. {item}")
# Replace with line-separated attendance list
replacement_text = "\n".join(attendance_list)
cell_replacements = replace_red_text_in_cell(target_cell, replacement_text)
replacements_made += cell_replacements
print(f" β
Added {len(attendance_list)} attendance items")
print(f" π Replacements made: {cell_replacements}")
return replacements_made
def fix_management_summary_details_column(table, flat_json):
"""Fix the DETAILS column in Management Summary table"""
replacements_made = 0
print(f" π― FIX: Management Summary DETAILS column processing")
# Check if this is a Management Summary table
table_text = ""
for row in table.rows[:2]:
for cell in row.cells:
table_text += get_clean_text(cell).lower() + " "
if not ("mass management" in table_text and "details" in table_text):
return 0
print(f" β
Confirmed Mass Management Summary table")
# Process each row looking for Std 5. and Std 6. with red text
for row_idx, row in enumerate(table.rows):
if len(row.cells) >= 2:
standard_cell = row.cells[0]
details_cell = row.cells[1]
standard_text = get_clean_text(standard_cell).strip()
# Look for Std 5. Verification and Std 6. Internal Review specifically
if "Std 5." in standard_text and "Verification" in standard_text:
if has_red_text(details_cell):
print(f" π Found Std 5. Verification with red text")
json_value = find_matching_json_value("Std 5. Verification", flat_json)
if json_value is not None:
replacement_text = get_value_as_string(json_value, "Std 5. Verification")
cell_replacements = replace_red_text_in_cell(details_cell, replacement_text)
replacements_made += cell_replacements
print(f" β
Replaced Std 5. Verification details")
elif "Std 6." in standard_text and "Internal Review" in standard_text:
if has_red_text(details_cell):
print(f" π Found Std 6. Internal Review with red text")
json_value = find_matching_json_value("Std 6. Internal Review", flat_json)
if json_value is not None:
replacement_text = get_value_as_string(json_value, "Std 6. Internal Review")
cell_replacements = replace_red_text_in_cell(details_cell, replacement_text)
replacements_made += cell_replacements
print(f" β
Replaced Std 6. Internal Review details")
return replacements_made
def fix_operator_declaration_empty_values(table, flat_json):
"""Fix Operator Declaration table when values are empty or need updating"""
replacements_made = 0
print(f" π― FIX: Operator Declaration empty values processing")
# Check if this is an Operator Declaration table
table_context = ""
for row in table.rows:
for cell in row.cells:
table_context += get_clean_text(cell).lower() + " "
if not ("print name" in table_context and "position title" in table_context):
return 0
print(f" β
Confirmed Operator Declaration table")
# Find the data row with Print Name and Position Title
for row_idx, row in enumerate(table.rows):
if len(row.cells) >= 2:
cell1_text = get_clean_text(row.cells[0]).strip().lower()
cell2_text = get_clean_text(row.cells[1]).strip().lower()
# Check if this is the header row
if "print name" in cell1_text and "position" in cell2_text:
print(f" π Found header row at {row_idx + 1}")
# Look for the data row (next row)
if row_idx + 1 < len(table.rows):
data_row = table.rows[row_idx + 1]
if len(data_row.cells) >= 2:
name_cell = data_row.cells[0]
position_cell = data_row.cells[1]
# Check if cells are empty or have red text
name_text = get_clean_text(name_cell).strip()
position_text = get_clean_text(position_cell).strip()
print(f" π Current values: Name='{name_text}', Position='{position_text}'")
# Get the Operator Declaration section data
operator_declaration = find_matching_json_value("Operator Declaration", flat_json)
if operator_declaration and isinstance(operator_declaration, dict):
print(f" π Found Operator Declaration data: {operator_declaration}")
# Update Print Name
if "Print Name" in operator_declaration:
print_name_value = operator_declaration["Print Name"]
if isinstance(print_name_value, list) and print_name_value:
new_name = str(print_name_value[0]).strip()
if new_name and "Pty Ltd" not in new_name and "Company" not in new_name:
name_cell.text = new_name
replacements_made += 1
print(f" β
Updated Print Name: '{name_text}' -> '{new_name}'")
# Update Position Title
if "Position Title" in operator_declaration:
position_value = operator_declaration["Position Title"]
if isinstance(position_value, list) and position_value:
new_position = str(position_value[0]).strip()
if new_position:
position_cell.text = new_position
replacements_made += 1
print(f" β
Updated Position Title: '{position_text}' -> '{new_position}'")
else:
print(f" β No Operator Declaration section found in JSON")
# Fallback: try individual fields
name_value = find_matching_json_value("Operator Declaration.Print Name", flat_json)
if name_value:
new_name = get_value_as_string(name_value).strip()
if new_name and "Pty Ltd" not in new_name:
name_cell.text = new_name
replacements_made += 1
print(f" β
Updated Print Name (fallback): '{new_name}'")
position_value = find_matching_json_value("Operator Declaration.Position Title", flat_json)
if position_value:
new_position = get_value_as_string(position_value).strip()
if new_position:
position_cell.text = new_position
replacements_made += 1
print(f" β
Updated Position Title (fallback): '{new_position}'")
break
return replacements_made
def handle_multiple_red_segments_in_cell(cell, flat_json):
"""Handle multiple red text segments within a single cell"""
replacements_made = 0
red_segments = extract_red_text_segments(cell)
if not red_segments:
return 0
# Try to match each segment individually
for i, segment in enumerate(red_segments):
segment_text = segment['text'].strip()
if segment_text:
json_value = find_matching_json_value(segment_text, flat_json)
if json_value is not None:
replacement_text = get_value_as_string(json_value, segment_text)
if replace_single_segment(segment, replacement_text):
replacements_made += 1
print(f" β
Replaced segment {i+1}: '{segment_text}' -> '{replacement_text}'")
return replacements_made
def handle_nature_business_multiline_fix(cell, flat_json):
"""Handle Nature of Business multiline red text"""
replacements_made = 0
# Extract red text to check if it looks like nature of business
red_text = ""
for paragraph in cell.paragraphs:
for run in paragraph.runs:
if is_red(run):
red_text += run.text
red_text = red_text.strip()
if not red_text:
return 0
# Check if this looks like nature of business content
nature_indicators = ["transport", "logistics", "freight", "delivery", "trucking", "haulage"]
if any(indicator in red_text.lower() for indicator in nature_indicators):
# Try to find nature of business in JSON
nature_value = find_matching_json_value("Nature of Business", flat_json)
if nature_value is not None:
replacement_text = get_value_as_string(nature_value, "Nature of Business")
cell_replacements = replace_red_text_in_cell(cell, replacement_text)
replacements_made += cell_replacements
print(f" β
Fixed Nature of Business multiline content")
return replacements_made
def handle_management_summary_fix(cell, flat_json):
"""Handle Management Summary content fixes"""
replacements_made = 0
# Extract red text
red_text = ""
for paragraph in cell.paragraphs:
for run in paragraph.runs:
if is_red(run):
red_text += run.text
red_text = red_text.strip()
if not red_text:
return 0
# Look for management summary data in new schema format
management_types = ["Mass Management Summary", "Maintenance Management Summary", "Fatigue Management Summary"]
for mgmt_type in management_types:
if mgmt_type in flat_json:
mgmt_data = flat_json[mgmt_type]
if isinstance(mgmt_data, dict):
# Try to match red text with any standard in this management type
for std_key, std_value in mgmt_data.items():
if isinstance(std_value, list) and std_value:
# Check if red text matches this standard
if len(red_text) > 10:
for item in std_value:
if red_text.lower() in str(item).lower() or str(item).lower() in red_text.lower():
replacement_text = "\n".join(str(i) for i in std_value)
cell_replacements = replace_red_text_in_cell(cell, replacement_text)
replacements_made += cell_replacements
print(f" β
Fixed {mgmt_type} - {std_key}")
return replacements_made
return replacements_made
def handle_operator_declaration_fix(table, flat_json):
"""Handle small Operator/Auditor Declaration tables"""
replacements_made = 0
if len(table.rows) > 4: # Only process small tables
return 0
# Get table context
table_text = ""
for row in table.rows:
for cell in row.cells:
table_text += get_clean_text(cell).lower() + " "
# Check if this is a declaration table
if not ("print name" in table_text or "signature" in table_text or "date" in table_text):
return 0
print(f" π― Processing declaration table")
# Process each cell with red text
for row_idx, row in enumerate(table.rows):
for cell_idx, cell in enumerate(row.cells):
if has_red_text(cell):
# Try common declaration fields
declaration_fields = [
"Print Name", "Position Title", "Signature", "Date",
"Operator Declaration.Print Name", "Operator Declaration.Position Title",
"NHVAS Approved Auditor Declaration.Print Name"
]
replaced = False
for field in declaration_fields:
field_value = find_matching_json_value(field, flat_json)
if field_value is not None:
replacement_text = get_value_as_string(field_value, field)
if replacement_text.strip():
cell_replacements = replace_red_text_in_cell(cell, replacement_text)
if cell_replacements > 0:
replacements_made += cell_replacements
print(f" β
Fixed declaration field: {field}")
replaced = True
break
# If no specific field match, try generic signature/date
if not replaced:
red_text = ""
for paragraph in cell.paragraphs:
for run in paragraph.runs:
if is_red(run):
red_text += run.text
if "signature" in red_text.lower():
cell_replacements = replace_red_text_in_cell(cell, "[Signature]")
replacements_made += cell_replacements
elif "date" in red_text.lower():
cell_replacements = replace_red_text_in_cell(cell, "[Date]")
replacements_made += cell_replacements
return replacements_made
def handle_print_accreditation_section(table, flat_json):
"""Handle Print Accreditation section"""
replacements_made = 0
print(f" π Processing Print Accreditation section")
for row_idx, row in enumerate(table.rows):
for cell_idx, cell in enumerate(row.cells):
if has_red_text(cell):
# Try print accreditation fields
accreditation_fields = [
"(print accreditation name)",
"Print Name",
"Operator name (Legal entity)"
]
for field in accreditation_fields:
field_value = find_matching_json_value(field, flat_json)
if field_value is not None:
replacement_text = get_value_as_string(field_value, field)
if replacement_text.strip():
cell_replacements = replace_red_text_in_cell(cell, replacement_text)
replacements_made += cell_replacements
if cell_replacements > 0:
print(f" β
Fixed accreditation: {field}")
break
return replacements_made
def process_single_column_sections(cell, key_text, flat_json):
"""Process single column sections with red text"""
replacements_made = 0
if has_red_text(cell):
red_text = ""
for paragraph in cell.paragraphs:
for run in paragraph.runs:
if is_red(run):
red_text += run.text
if red_text.strip():
# Try direct matching first
section_value = find_matching_json_value(red_text.strip(), flat_json)
if section_value is None:
# Try key-based matching
section_value = find_matching_json_value(key_text, flat_json)
if section_value is not None:
section_replacement = get_value_as_string(section_value, red_text.strip())
cell_replacements = replace_red_text_in_cell(cell, section_replacement)
replacements_made += cell_replacements
if cell_replacements > 0:
print(f" β
Fixed single column section: '{key_text}'")
return replacements_made
def process_tables(document, flat_json):
"""Process all tables in the document with comprehensive fixes"""
replacements_made = 0
for table_idx, table in enumerate(document.tables):
print(f"\nπ Processing table {table_idx + 1}:")
# Get table context
table_text = ""
for row in table.rows[:3]:
for cell in row.cells:
table_text += get_clean_text(cell).lower() + " "
# Detect Management Summary tables
management_summary_indicators = ["mass management", "maintenance management", "fatigue management"]
has_management = any(indicator in table_text for indicator in management_summary_indicators)
has_details = "details" in table_text
if has_management and has_details:
print(f" π Detected Management Summary table")
summary_fixes = fix_management_summary_details_column(table, flat_json)
replacements_made += summary_fixes
# Process remaining red text in management summary
summary_replacements = 0
for row_idx, row in enumerate(table.rows):
for cell_idx, cell in enumerate(row.cells):
if has_red_text(cell):
# Try direct matching with the new schema names first
for mgmt_type in ["Mass Management Summary", "Maintenance Management Summary", "Fatigue Management Summary"]:
if mgmt_type.lower().replace(" summary", "") in table_text:
# Look for this standard in the JSON
if mgmt_type in flat_json:
mgmt_data = flat_json[mgmt_type]
if isinstance(mgmt_data, dict):
# Find matching standard
for std_key, std_value in mgmt_data.items():
if isinstance(std_value, list) and len(std_value) > 0:
# Check if red text matches this standard data
red_text = "".join(run.text for p in cell.paragraphs for run in p.runs if is_red(run)).strip()
for item in std_value:
if len(red_text) > 15 and red_text.lower() in str(item).lower():
replacement_text = "\n".join(str(i) for i in std_value)
cell_replacements = replace_red_text_in_cell(cell, replacement_text)
summary_replacements += cell_replacements
print(f" β
Updated {std_key} with summary data")
break
break
# Fallback to existing method
if summary_replacements == 0:
cell_replacements = handle_management_summary_fix(cell, flat_json)
summary_replacements += cell_replacements
replacements_made += summary_replacements
continue
# Detect Vehicle Registration tables
vehicle_indicators = ["registration number", "sub-contractor", "weight verification", "rfs suspension"]
indicator_count = sum(1 for indicator in vehicle_indicators if indicator in table_text)
if indicator_count >= 2:
print(f" π Detected Vehicle Registration table")
vehicle_replacements = handle_vehicle_registration_table(table, flat_json)
replacements_made += vehicle_replacements
continue
# Detect Attendance List tables
if "attendance list" in table_text and "names and position titles" in table_text:
print(f" π₯ Detected Attendance List table")
attendance_replacements = handle_attendance_list_table_enhanced(table, flat_json)
replacements_made += attendance_replacements
continue
# Detect Print Accreditation tables
print_accreditation_indicators = ["print name", "position title"]
indicator_count = sum(1 for indicator in print_accreditation_indicators if indicator in table_text)
if indicator_count >= 1:
print(f" π Detected Print Accreditation table")
# Check for declaration tables that need fixing
if "print name" in table_text and "position" in table_text:
declaration_fixes = fix_operator_declaration_empty_values(table, flat_json)
replacements_made += declaration_fixes
print_accreditation_replacements = handle_print_accreditation_section(table, flat_json)
replacements_made += print_accreditation_replacements
continue
# Process regular table rows
for row_idx, row in enumerate(table.rows):
if len(row.cells) < 1:
continue
key_cell = row.cells[0]
key_text = get_clean_text(key_cell)
if not key_text:
continue
print(f" π Row {row_idx + 1}: Key = '{key_text}'")
json_value = find_matching_json_value(key_text, flat_json)
if json_value is not None:
replacement_text = get_value_as_string(json_value, key_text)
# Handle Australian Company Number
if ("australian company number" in key_text.lower() or "company number" in key_text.lower()) and isinstance(json_value, list):
cell_replacements = handle_australian_company_number(row, json_value)
replacements_made += cell_replacements
# Handle section headers
elif ("attendance list" in key_text.lower() or "nature of" in key_text.lower()) and row_idx + 1 < len(table.rows):
print(f" β
Section header detected, checking next row...")
next_row = table.rows[row_idx + 1]
for cell_idx, cell in enumerate(next_row.cells):
if has_red_text(cell):
print(f" β
Found red text in next row, cell {cell_idx + 1}")
if isinstance(json_value, list):
replacement_text = "\n".join(str(item) for item in json_value)
cell_replacements = replace_red_text_in_cell(cell, replacement_text)
replacements_made += cell_replacements
if cell_replacements > 0:
print(f" -> Replaced section content")
# Handle single column sections
elif len(row.cells) == 1 or (len(row.cells) > 1 and not any(has_red_text(row.cells[i]) for i in range(1, len(row.cells)))):
if has_red_text(key_cell):
cell_replacements = process_single_column_sections(key_cell, key_text, flat_json)
replacements_made += cell_replacements
# Handle regular key-value pairs
else:
for cell_idx in range(1, len(row.cells)):
value_cell = row.cells[cell_idx]
if has_red_text(value_cell):
print(f" β
Found red text in column {cell_idx + 1}")
cell_replacements = replace_red_text_in_cell(value_cell, replacement_text)
replacements_made += cell_replacements
else:
# Fallback processing for unmatched keys
if len(row.cells) == 1 and has_red_text(key_cell):
red_text = ""
for paragraph in key_cell.paragraphs:
for run in paragraph.runs:
if is_red(run):
red_text += run.text
if red_text.strip():
section_value = find_matching_json_value(red_text.strip(), flat_json)
if section_value is not None:
section_replacement = get_value_as_string(section_value, red_text.strip())
cell_replacements = replace_red_text_in_cell(key_cell, section_replacement)
replacements_made += cell_replacements
# Process red text in all cells
for cell_idx in range(len(row.cells)):
cell = row.cells[cell_idx]
if has_red_text(cell):
cell_replacements = handle_multiple_red_segments_in_cell(cell, flat_json)
replacements_made += cell_replacements
# Apply fixes if no replacements made
if cell_replacements == 0:
surgical_fix = handle_nature_business_multiline_fix(cell, flat_json)
replacements_made += surgical_fix
if cell_replacements == 0:
management_summary_fix = handle_management_summary_fix(cell, flat_json)
replacements_made += management_summary_fix
# Handle Operator/Auditor Declaration tables (check last few tables)
print(f"\nπ― Final check for Declaration tables...")
for table in document.tables[-3:]:
if len(table.rows) <= 4:
declaration_fix = handle_operator_declaration_fix(table, flat_json)
replacements_made += declaration_fix
return replacements_made
def process_paragraphs(document, flat_json):
"""Process all paragraphs in the document"""
replacements_made = 0
print(f"\nπ Processing paragraphs:")
for para_idx, paragraph in enumerate(document.paragraphs):
red_runs = [run for run in paragraph.runs if is_red(run) and run.text.strip()]
if red_runs:
red_text_only = "".join(run.text for run in red_runs).strip()
print(f" π Paragraph {para_idx + 1}: Found red text: '{red_text_only}'")
json_value = find_matching_json_value(red_text_only, flat_json)
if json_value is None:
# Enhanced pattern matching for signatures and dates
if "AUDITOR SIGNATURE" in red_text_only.upper() or "DATE" in red_text_only.upper():
json_value = find_matching_json_value("auditor signature", flat_json)
elif "OPERATOR SIGNATURE" in red_text_only.upper():
json_value = find_matching_json_value("operator signature", flat_json)
if json_value is not None:
replacement_text = get_value_as_string(json_value)
print(f" β
Replacing red text with: '{replacement_text}'")
red_runs[0].text = replacement_text
red_runs[0].font.color.rgb = RGBColor(0, 0, 0)
for run in red_runs[1:]:
run.text = ''
replacements_made += 1
return replacements_made
def process_headings(document, flat_json):
"""Process headings and their related content"""
replacements_made = 0
print(f"\nπ Processing headings:")
paragraphs = document.paragraphs
for para_idx, paragraph in enumerate(paragraphs):
paragraph_text = paragraph.text.strip()
if not paragraph_text:
continue
# Check if this is a heading
matched_heading = None
for category, patterns in HEADING_PATTERNS.items():
for pattern in patterns:
if re.search(pattern, paragraph_text, re.IGNORECASE):
matched_heading = pattern
break
if matched_heading:
break
if matched_heading:
print(f" π Found heading at paragraph {para_idx + 1}: '{paragraph_text}'")
# Check current heading paragraph
if has_red_text_in_paragraph(paragraph):
print(f" π΄ Found red text in heading itself")
heading_replacements = process_red_text_in_paragraph(paragraph, paragraph_text, flat_json)
replacements_made += heading_replacements
# Look ahead for related content
for next_para_offset in range(1, 6):
next_para_idx = para_idx + next_para_offset
if next_para_idx >= len(paragraphs):
break
next_paragraph = paragraphs[next_para_idx]
next_text = next_paragraph.text.strip()
if not next_text:
continue
# Stop if we hit another heading
is_another_heading = False
for category, patterns in HEADING_PATTERNS.items():
for pattern in patterns:
if re.search(pattern, next_text, re.IGNORECASE):
is_another_heading = True
break
if is_another_heading:
break
if is_another_heading:
break
# Process red text with context
if has_red_text_in_paragraph(next_paragraph):
print(f" π΄ Found red text in paragraph {next_para_idx + 1} after heading")
context_replacements = process_red_text_in_paragraph(
next_paragraph,
paragraph_text,
flat_json
)
replacements_made += context_replacements
return replacements_made
def process_red_text_in_paragraph(paragraph, context_text, flat_json):
"""Process red text within a paragraph using context"""
replacements_made = 0
red_text_segments = []
for run in paragraph.runs:
if is_red(run) and run.text.strip():
red_text_segments.append(run.text.strip())
if not red_text_segments:
return 0
combined_red_text = " ".join(red_text_segments).strip()
print(f" π Red text found: '{combined_red_text}'")
json_value = None
# Direct matching
json_value = find_matching_json_value(combined_red_text, flat_json)
# Context-based matching
if json_value is None:
if "NHVAS APPROVED AUDITOR" in context_text.upper():
auditor_fields = ["auditor name", "auditor", "nhvas auditor", "approved auditor", "print name"]
for field in auditor_fields:
json_value = find_matching_json_value(field, flat_json)
if json_value is not None:
print(f" β
Found auditor match with field: '{field}'")
break
elif "OPERATOR DECLARATION" in context_text.upper():
operator_fields = ["operator name", "operator", "company name", "organisation name", "print name"]
for field in operator_fields:
json_value = find_matching_json_value(field, flat_json)
if json_value is not None:
print(f" β
Found operator match with field: '{field}'")
break
# Combined context queries
if json_value is None:
context_queries = [
f"{context_text} {combined_red_text}",
combined_red_text,
context_text
]
for query in context_queries:
json_value = find_matching_json_value(query, flat_json)
if json_value is not None:
print(f" β
Found match with combined query")
break
# Replace if match found
if json_value is not None:
replacement_text = get_value_as_string(json_value, combined_red_text)
red_runs = [run for run in paragraph.runs if is_red(run) and run.text.strip()]
if red_runs:
red_runs[0].text = replacement_text
red_runs[0].font.color.rgb = RGBColor(0, 0, 0)
for run in red_runs[1:]:
run.text = ''
replacements_made = 1
print(f" β
Replaced with: '{replacement_text}'")
else:
print(f" β No match found for red text: '{combined_red_text}'")
return replacements_made
def force_red_text_replacement(document, flat_json):
"""Force replacement of any remaining red text by trying ALL JSON values"""
replacements_made = 0
print(f"\nπ― FORCE FIX: Scanning for any remaining red text...")
# Collect all possible replacement values from JSON
all_values = {}
for key, value in flat_json.items():
if value:
value_str = get_value_as_string(value, key)
if value_str and isinstance(value_str, str) and value_str.strip():
all_values[key] = value_str.strip()
# Store individual items from lists for partial matching
if isinstance(value, list):
for i, item in enumerate(value):
item_str = str(item).strip() if item else ""
if item_str:
all_values[f"{key}_item_{i}"] = item_str
print(f" Found {len(all_values)} potential replacement values")
# Process all tables
for table_idx, table in enumerate(document.tables):
for row_idx, row in enumerate(table.rows):
for cell_idx, cell in enumerate(row.cells):
if has_red_text(cell):
print(f" π Found red text in Table {table_idx + 1}, Row {row_idx + 1}, Cell {cell_idx + 1}")
# Extract all red text from this cell
red_text_parts = []
for paragraph in cell.paragraphs:
for run in paragraph.runs:
if is_red(run) and run.text.strip():
red_text_parts.append(run.text.strip())
combined_red_text = " ".join(red_text_parts).strip()
print(f" Red text: '{combined_red_text}'")
# Find best match
best_match = None
best_key = None
# Exact matching
for key, value in all_values.items():
if combined_red_text.lower() == value.lower():
best_match = value
best_key = key
break
# Partial matching
if not best_match:
for key, value in all_values.items():
if (len(value) > 3 and value.lower() in combined_red_text.lower()) or \
(len(combined_red_text) > 3 and combined_red_text.lower() in value.lower()):
best_match = value
best_key = key
break
# Word-by-word matching for names/dates
if not best_match:
red_words = set(word.lower() for word in combined_red_text.split() if len(word) > 2)
best_score = 0
for key, value in all_values.items():
value_words = set(word.lower() for word in str(value).split() if len(word) > 2)
if red_words and value_words:
common_words = red_words.intersection(value_words)
if common_words:
score = len(common_words) / len(red_words)
if score > best_score and score >= 0.5: # At least 50% match
best_score = score
best_match = value
best_key = key
# Replace if we found a match
if best_match:
print(f" β
Replacing with: '{best_match}' (from key: '{best_key}')")
cell_replacements = replace_red_text_in_cell(cell, best_match)
replacements_made += cell_replacements
print(f" Made {cell_replacements} replacements")
else:
print(f" β No suitable replacement found")
# Process all paragraphs
for para_idx, paragraph in enumerate(document.paragraphs):
if has_red_text_in_paragraph(paragraph):
red_text_parts = []
for run in paragraph.runs:
if is_red(run) and run.text.strip():
red_text_parts.append(run.text.strip())
combined_red_text = " ".join(red_text_parts).strip()
if combined_red_text:
print(f" π Found red text in Paragraph {para_idx + 1}: '{combined_red_text}'")
# Same matching logic as above
best_match = None
best_key = None
# Exact match
for key, value in all_values.items():
if combined_red_text.lower() == value.lower():
best_match = value
best_key = key
break
# Partial match
if not best_match:
for key, value in all_values.items():
if (len(value) > 3 and value.lower() in combined_red_text.lower()) or \
(len(combined_red_text) > 3 and combined_red_text.lower() in value.lower()):
best_match = value
best_key = key
break
# Word match
if not best_match:
red_words = set(word.lower() for word in combined_red_text.split() if len(word) > 2)
best_score = 0
for key, value in all_values.items():
value_words = set(word.lower() for word in str(value).split() if len(word) > 2)
if red_words and value_words:
common_words = red_words.intersection(value_words)
if common_words:
score = len(common_words) / len(red_words)
if score > best_score and score >= 0.5:
best_score = score
best_match = value
best_key = key
# Replace if found
if best_match:
print(f" β
Replacing with: '{best_match}' (from key: '{best_key}')")
red_runs = [run for run in paragraph.runs if is_red(run) and run.text.strip()]
if red_runs:
red_runs[0].text = best_match
red_runs[0].font.color.rgb = RGBColor(0, 0, 0)
for run in red_runs[1:]:
run.text = ''
replacements_made += 1
print(f" Made 1 paragraph replacement")
else:
print(f" β No suitable replacement found")
return replacements_made
def process_hf(json_file, docx_file, output_file):
"""Main processing function with comprehensive error handling"""
try:
# Load JSON
if hasattr(json_file, "read"):
json_data = json.load(json_file)
else:
with open(json_file, 'r', encoding='utf-8') as f:
json_data = json.load(f)
flat_json = flatten_json(json_data)
print("π Available JSON keys (sample):")
for i, (key, value) in enumerate(sorted(flat_json.items())):
if i < 10:
print(f" - {key}: {value}")
print(f" ... and {len(flat_json) - 10} more keys\n")
# Load DOCX
if hasattr(docx_file, "read"):
doc = Document(docx_file)
else:
doc = Document(docx_file)
# Process document with all fixes
print("π Starting comprehensive document processing...")
table_replacements = process_tables(doc, flat_json)
paragraph_replacements = process_paragraphs(doc, flat_json)
heading_replacements = process_headings(doc, flat_json)
# Final force fix for any remaining red text
force_replacements = force_red_text_replacement(doc, flat_json)
total_replacements = table_replacements + paragraph_replacements + heading_replacements + force_replacements
# Save output
if hasattr(output_file, "write"):
doc.save(output_file)
else:
doc.save(output_file)
print(f"\nβ
Document saved as: {output_file}")
print(f"β
Total replacements: {total_replacements}")
print(f" π Tables: {table_replacements}")
print(f" π Paragraphs: {paragraph_replacements}")
print(f" π Headings: {heading_replacements}")
print(f" π― Force fixes: {force_replacements}")
print(f"π Processing complete!")
except FileNotFoundError as e:
print(f"β File not found: {e}")
except Exception as e:
print(f"β Error: {e}")
import traceback
traceback.print_exc()
if __name__ == "__main__":
import sys
if len(sys.argv) != 4:
print("Usage: python pipeline.py <input_docx> <updated_json> <output_docx>")
exit(1)
docx_path = sys.argv[1]
json_path = sys.argv[2]
output_path = sys.argv[3]
process_hf(json_path, docx_path, output_path) |