Spaces:
Running
Running
File size: 22,186 Bytes
80f110c 781b76e 8a1a757 ca62f03 781b76e c6a5264 781b76e 8a1a757 80f110c f1ee128 80f110c c6a5264 8a1a757 ca62f03 8a1a757 781b76e 80f110c 8a1a757 80f110c c6a5264 8726e17 80f110c 8726e17 c6a5264 80f110c 8a1a757 781b76e ca62f03 781b76e 8a1a757 c6a5264 8a1a757 c6a5264 8a1a757 781b76e 8a1a757 781b76e 8a1a757 80f110c 8a1a757 82a76f0 8a1a757 c6a5264 8a1a757 781b76e 8a1a757 ca62f03 8a1a757 ca62f03 781b76e 8a1a757 781b76e 8a1a757 781b76e 8a1a757 781b76e 8a1a757 781b76e 8a1a757 781b76e 8a1a757 781b76e 8a1a757 781b76e 8a1a757 c6a5264 8726e17 8a1a757 8726e17 c6a5264 8726e17 8a1a757 8726e17 8a1a757 8726e17 781b76e 6cb5d1b 8726e17 781b76e 8726e17 781b76e 8726e17 8a04dcd 8726e17 781b76e 8a1a757 c6a5264 781b76e c6a5264 781b76e c6a5264 80f110c 781b76e c6a5264 781b76e ca62f03 8a1a757 781b76e 8a1a757 c6a7597 8a1a757 c6a5264 781b76e 8a1a757 c6a5264 8726e17 c6a5264 781b76e 8a1a757 781b76e c6a5264 781b76e c6a5264 781b76e 8a1a757 781b76e 8a1a757 781b76e 8a1a757 781b76e 8a04dcd 781b76e 8a1a757 781b76e 8a04dcd 82a76f0 8a04dcd c6a5264 8a1a757 c6a5264 8a04dcd 781b76e c6a5264 8a1a757 c6a5264 8a1a757 8a04dcd 8a1a757 c6a5264 8a04dcd 8726e17 8a04dcd 8726e17 ca62f03 781b76e 8a1a757 c6a5264 781b76e 8a1a757 781b76e 8a1a757 781b76e 8a1a757 781b76e 8a1a757 781b76e 8726e17 781b76e 8726e17 781b76e c6a5264 8a1a757 c6a5264 8a1a757 c6a5264 82a76f0 781b76e c6a5264 8a1a757 c6a5264 8a04dcd 781b76e 8a04dcd 781b76e 8a04dcd 781b76e 8a04dcd 781b76e 8a04dcd 8a1a757 8a04dcd 781b76e 8a04dcd 8a1a757 781b76e 8a04dcd 8a1a757 8a04dcd 781b76e c6a5264 82a76f0 c6a5264 80f110c c6a5264 8a04dcd 8a1a757 8a04dcd c6a5264 8a04dcd c6a5264 8a1a757 8726e17 c6a5264 781b76e c6a5264 781b76e c6a5264 781b76e 8a1a757 781b76e c6a5264 781b76e c6a5264 781b76e c6a5264 781b76e c6a5264 781b76e 8a1a757 781b76e c6a5264 80f110c c6a5264 781b76e 8a1a757 80f110c c6a5264 781b76e 80f110c 8a1a757 80f110c c6a5264 903baeb c6a5264 903baeb 8a1a757 781b76e 8a1a757 781b76e c6a5264 781b76e c6a5264 8a1a757 c6a5264 781b76e b3f4ecb c6a5264 781b76e 8a1a757 781b76e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 |
# -*- coding: utf-8 -*-
"""
FastAPI + Gradio : service d’indexation asynchrone avec FAISS.
Ce fichier a été corrigé pour :
* importer correctement `JobState` (import relatif)
* garantir que le répertoire `app` est dans le PYTHONPATH lorsqu’on lance le script
* conserver toutes les fonctionnalités précédentes (indexation, recherche, UI)
"""
from __future__ import annotations
import os
import io
import json
import time
import hashlib
import logging
import tarfile
import sys
from pathlib import Path
from typing import List, Dict, Any, Tuple, Optional
from concurrent.futures import ThreadPoolExecutor
import numpy as np
import faiss
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse, StreamingResponse
from pydantic import BaseModel
import gradio as gr
# --------------------------------------------------------------------------- #
# RÉGLAGE DU PYTHONPATH (pour que les imports relatifs fonctionnent)
# --------------------------------------------------------------------------- #
# Si le script est lancé depuis le répertoire `app/`, le package `app` n’est pas
# découvert automatiquement. On ajoute le répertoire parent au sys.path.
CURRENT_DIR = Path(__file__).resolve().parent
PROJECT_ROOT = CURRENT_DIR.parent
if str(PROJECT_ROOT) not in sys.path:
sys.path.insert(0, str(PROJECT_ROOT))
# --------------------------------------------------------------------------- #
# LOGGING
# --------------------------------------------------------------------------- #
LOG = logging.getLogger("remote-indexer-async")
if not LOG.handlers:
h = logging.StreamHandler()
h.setFormatter(logging.Formatter("%(asctime)s - %(levelname)s - %(message)s"))
LOG.addHandler(h)
LOG.setLevel(logging.INFO)
DBG = logging.getLogger("remote-indexer-async.debug")
if not DBG.handlers:
hd = logging.StreamHandler()
hd.setFormatter(logging.Formatter("[DEBUG] %(asctime)s - %(message)s"))
DBG.addHandler(hd)
DBG.setLevel(logging.DEBUG)
# --------------------------------------------------------------------------- #
# CONFIGURATION (variables d’environnement)
# --------------------------------------------------------------------------- #
PORT = int(os.getenv("PORT", "7860"))
DATA_ROOT = os.getenv("DATA_ROOT", "/tmp/data")
os.makedirs(DATA_ROOT, exist_ok=True)
EMB_PROVIDER = os.getenv("EMB_PROVIDER", "dummy").strip().lower()
EMB_MODEL = os.getenv("EMB_MODEL", "sentence-transformers/all-mpnet-base-v2").strip()
EMB_BATCH = int(os.getenv("EMB_BATCH", "32"))
EMB_DIM = int(os.getenv("EMB_DIM", "64")) # dimension réduite (optimisation)
MAX_WORKERS = int(os.getenv("MAX_WORKERS", "1"))
# --------------------------------------------------------------------------- #
# CACHE DIRECTORIES (évite PermissionError)
# --------------------------------------------------------------------------- #
def _setup_cache_dirs() -> Dict[str, str]:
os.environ.setdefault("HOME", "/home/user")
CACHE_ROOT = os.getenv("CACHE_ROOT", "/tmp/.cache").rstrip("/")
paths = {
"root": CACHE_ROOT,
"hf_home": f"{CACHE_ROOT}/huggingface",
"hf_hub": f"{CACHE_ROOT}/huggingface/hub",
"hf_tf": f"{CACHE_ROOT}/huggingface/transformers",
"torch": f"{CACHE_ROOT}/torch",
"st": f"{CACHE_ROOT}/sentence-transformers",
"mpl": f"{CACHE_ROOT}/matplotlib",
}
for p in paths.values():
try:
os.makedirs(p, exist_ok=True)
except Exception as e:
LOG.warning("Impossible de créer %s : %s", p, e)
os.environ["HF_HOME"] = paths["hf_home"]
os.environ["HF_HUB_CACHE"] = paths["hf_hub"]
os.environ["TRANSFORMERS_CACHE"] = paths["hf_tf"]
os.environ["TORCH_HOME"] = paths["torch"]
os.environ["SENTENCE_TRANSFORMERS_HOME"] = paths["st"]
os.environ["MPLCONFIGDIR"] = paths["mpl"]
os.environ.setdefault("HF_HUB_DISABLE_SYMLINKS_WARNING", "1")
os.environ.setdefault("TOKENIZERS_PARALLELISM", "false")
LOG.info("Caches configurés : %s", json.dumps(paths, indent=2))
return paths
CACHE_PATHS = _setup_cache_dirs()
# --------------------------------------------------------------------------- #
# IMPORT DE LA CLASSE DE STATE (corrigé : import relatif)
# --------------------------------------------------------------------------- #
# Le fichier `index_state.py` se trouve dans `app/core/`.
# En étant dans le répertoire `app`, on peut l’importer via le package `core`.
from core.index_state import JobState # <-- IMPORT CORRIGÉ
# --------------------------------------------------------------------------- #
# GLOBALS
# --------------------------------------------------------------------------- #
JOBS: Dict[str, JobState] = {}
def _now() -> str:
return time.strftime("%H:%M:%S")
def _proj_dirs(project_id: str) -> Tuple[str, str, str]:
base = os.path.join(DATA_ROOT, project_id)
ds_dir = os.path.join(base, "dataset")
fx_dir = os.path.join(base, "faiss")
os.makedirs(ds_dir, exist_ok=True)
os.makedirs(fx_dir, exist_ok=True)
return base, ds_dir, fx_dir
def _add_msg(st: JobState, msg: str) -> None:
st.messages.append(f"[{_now()}] {msg}")
LOG.info("[%s] %s", st.job_id, msg)
DBG.debug("[%s] %s", st.job_id, msg)
def _set_stage(st: JobState, stage: str) -> None:
st.stage = stage
_add_msg(st, f"stage={stage}")
# --------------------------------------------------------------------------- #
# UTILITAIRES (chunking, normalisation, etc.)
# --------------------------------------------------------------------------- #
def _chunk_text(text: str, size: int = 200, overlap: int = 20) -> List[str]:
text = (text or "").replace("\r\n", "\n")
tokens = list(text)
if size <= 0:
return [text] if text else []
if overlap < 0:
overlap = 0
chunks = []
i = 0
while i < len(tokens):
j = min(i + size, len(tokens))
chunk = "".join(tokens[i:j]).strip()
if chunk:
chunks.append(chunk)
if j == len(tokens):
break
i = j - overlap if (j - overlap) > i else j
return chunks
def _l2_normalize(x: np.ndarray) -> np.ndarray:
n = np.linalg.norm(x, axis=1, keepdims=True) + 1e-12
return x / n
# --------------------------------------------------------------------------- #
# EMBEDDING PROVIDERS
# --------------------------------------------------------------------------- #
_ST_MODEL = None
_HF_TOKENIZER = None
_HF_MODEL = None
def _emb_dummy(texts: List[str], dim: int = EMB_DIM) -> np.ndarray:
vecs = np.zeros((len(texts), dim), dtype="float32")
for i, t in enumerate(texts):
h = hashlib.sha1((t or "").encode("utf-8")).digest()
rng = np.random.default_rng(int.from_bytes(h[:8], "little", signed=False))
v = rng.standard_normal(dim).astype("float32")
vecs[i] = v / (np.linalg.norm(v) + 1e-9)
return vecs
def _get_st_model():
global _ST_MODEL
if _ST_MODEL is None:
from sentence_transformers import SentenceTransformer
_ST_MODEL = SentenceTransformer(EMB_MODEL, cache_folder=CACHE_PATHS["st"])
LOG.info("[st] modèle chargé : %s (cache=%s)", EMB_MODEL, CACHE_PATHS["st"])
return _ST_MODEL
def _emb_st(texts: List[str]) -> np.ndarray:
model = _get_st_model()
vecs = model.encode(
texts,
batch_size=max(1, EMB_BATCH),
convert_to_numpy=True,
normalize_embeddings=True,
show_progress_bar=False,
).astype("float32")
return vecs
def _get_hf_model():
global _HF_TOKENIZER, _HF_MODEL
if _HF_MODEL is None or _HF_TOKENIZER is None:
from transformers import AutoTokenizer, AutoModel
_HF_TOKENIZER = AutoTokenizer.from_pretrained(EMB_MODEL, cache_dir=CACHE_PATHS["hf_tf"])
_HF_MODEL = AutoModel.from_pretrained(EMB_MODEL, cache_dir=CACHE_PATHS["hf_tf"])
_HF_MODEL.eval()
LOG.info("[hf] modèle chargé : %s (cache=%s)", EMB_MODEL, CACHE_PATHS["hf_tf"])
return _HF_TOKENIZER, _HF_MODEL
def _mean_pool(last_hidden_state: np.ndarray, attention_mask: np.ndarray) -> np.ndarray:
mask = attention_mask[..., None].astype(last_hidden_state.dtype)
summed = (last_hidden_state * mask).sum(axis=1)
counts = mask.sum(axis=1).clip(min=1e-9)
return summed / counts
def _emb_hf(texts: List[str]) -> np.ndarray:
import torch
tok, mod = _get_hf_model()
all_vecs: List[np.ndarray] = []
bs = max(1, EMB_BATCH)
with torch.no_grad():
for i in range(0, len(texts), bs):
batch = texts[i:i + bs]
enc = tok(batch, padding=True, truncation=True, return_tensors="pt")
out = mod(**enc)
last = out.last_hidden_state # (b, t, h)
pooled = _mean_pool(last.numpy(), enc["attention_mask"].numpy())
all_vecs.append(pooled.astype("float32"))
return np.concatenate(all_vecs, axis=0)
# --------------------------------------------------------------------------- #
# DATASET / FAISS I/O
# --------------------------------------------------------------------------- #
def _save_dataset(ds_dir: str, rows: List[Dict[str, Any]], store_text: bool = True) -> None:
os.makedirs(ds_dir, exist_ok=True)
data_path = os.path.join(ds_dir, "data.jsonl")
with open(data_path, "w", encoding="utf-8") as f:
for r in rows:
if not store_text:
r = {k: v for k, v in r.items() if k != "text"}
f.write(json.dumps(r, ensure_ascii=False) + "\n")
meta = {"format": "jsonl", "columns": ["path", "text", "chunk_id"], "count": len(rows)}
with open(os.path.join(ds_dir, "meta.json"), "w", encoding="utf-8") as f:
json.dump(meta, f, ensure_ascii=False, indent=2)
def _load_dataset(ds_dir: str) -> List[Dict[str, Any]]:
data_path = os.path.join(ds_dir, "data.jsonl")
if not os.path.isfile(data_path):
return []
out: List[Dict[str, Any]] = []
with open(data_path, "r", encoding="utf-8") as f:
for line in f:
try:
out.append(json.loads(line))
except Exception:
continue
return out
def _save_faiss(fx_dir: str, xb: np.ndarray, meta: Dict[str, Any]) -> None:
os.makedirs(fx_dir, exist_ok=True)
idx_path = os.path.join(fx_dir, "emb.faiss")
# ------------------- INDEX QUANTISÉ (IVF‑PQ) ------------------- #
quantizer = faiss.IndexFlatIP(xb.shape[1]) # inner‑product (cosine si normalisé)
index = faiss.IndexIVFPQ(quantizer, xb.shape[1], 100, 8, 8) # nlist=100, m=8, nbits=8
# entraînement sur un sous‑échantillon (max 10 k vecteurs)
rng = np.random.default_rng(0)
train = xb[rng.choice(xb.shape[0], min(10_000, xb.shape[0]), replace=False)]
index.train(train)
index.add(xb)
faiss.write_index(index, idx_path)
meta.update({"index_type": "IVF_PQ", "nlist": 100, "m": 8, "nbits": 8})
with open(os.path.join(fx_dir, "meta.json"), "w", encoding="utf-8") as f:
json.dump(meta, f, ensure_ascii=False, indent=2)
def _load_faiss(fx_dir: str) -> faiss.Index:
idx_path = os.path.join(fx_dir, "emb.faiss")
if not os.path.isfile(idx_path):
raise FileNotFoundError(f"FAISS index introuvable : {idx_path}")
# mmap → l’index reste sur disque, la RAM n’est utilisée que pour les requêtes
return faiss.read_index(idx_path, faiss.IO_FLAG_MMAP)
def _tar_dir_to_bytes(dir_path: str) -> bytes:
bio = io.BytesIO()
with tarfile.open(fileobj=bio, mode="w:gz", compresslevel=9) as tar:
tar.add(dir_path, arcname=os.path.basename(dir_path))
bio.seek(0)
return bio.read()
# --------------------------------------------------------------------------- #
# THREAD‑POOL (asynchrone)
# --------------------------------------------------------------------------- #
EXECUTOR = ThreadPoolExecutor(max_workers=max(1, MAX_WORKERS))
LOG.info("ThreadPoolExecutor initialisé : max_workers=%s", MAX_WORKERS)
def _do_index_job(
st: JobState,
files: List[Dict[str, str]],
chunk_size: int,
overlap: int,
batch_size: int,
store_text: bool,
) -> None:
"""
Pipeline complet :
1️⃣ Chunking
2️⃣ Embedding (dummy / st / hf)
3️⃣ Réduction de dimension (PCA) si besoin
4️⃣ Sauvegarde du dataset (texte optionnel)
5️⃣ Index FAISS quantisé + mmap
"""
try:
base, ds_dir, fx_dir = _proj_dirs(st.project_id)
# ------------------- 1️⃣ Chunking -------------------
_set_stage(st, "chunking")
rows: List[Dict[str, Any]] = []
st.total_files = len(files)
for f in files:
path = (f.get("path") or "unknown").strip()
txt = f.get("text") or ""
chunks = _chunk_text(txt, size=chunk_size, overlap=overlap)
for i, ck in enumerate(chunks):
rows.append({"path": path, "text": ck, "chunk_id": i})
st.total_chunks = len(rows)
_add_msg(st, f"Total chunks = {st.total_chunks}")
# ------------------- 2️⃣ Embedding -------------------
_set_stage(st, "embedding")
texts = [r["text"] for r in rows]
if EMB_PROVIDER == "dummy":
xb = _emb_dummy(texts, dim=EMB_DIM)
elif EMB_PROVIDER == "st":
xb = _emb_st(texts)
else:
xb = _emb_hf(texts)
# ------------------- 3️⃣ Réduction PCA (si besoin) -------------------
if xb.shape[1] != EMB_DIM:
from sklearn.decomposition import PCA
pca = PCA(n_components=EMB_DIM, random_state=0)
xb = pca.fit_transform(xb).astype("float32")
LOG.info("Réduction PCA appliquée : %d → %d dimensions", xb.shape[1], EMB_DIM)
st.embedded = xb.shape[0]
_add_msg(st, f"Embeddings générés : {st.embedded}")
# ------------------- 4️⃣ Sauvegarde dataset -------------------
_save_dataset(ds_dir, rows, store_text=store_text)
_add_msg(st, f"Dataset sauvegardé dans {ds_dir}")
# ------------------- 5️⃣ Index FAISS -------------------
_set_stage(st, "indexing")
meta = {
"dim": int(xb.shape[1]),
"count": int(xb.shape[0]),
"provider": EMB_PROVIDER,
"model": EMB_MODEL if EMB_PROVIDER != "dummy" else None,
}
_save_faiss(fx_dir, xb, meta)
st.indexed = int(xb.shape[0])
_add_msg(st, f"FAISS écrit sur {os.path.join(fx_dir, 'emb.faiss')}")
_set_stage(st, "done")
st.finished_at = time.time()
except Exception as e:
LOG.exception("Job %s échoué", st.job_id)
st.errors.append(str(e))
_add_msg(st, f"❌ Exception : {e}")
st.stage = "failed"
st.finished_at = time.time()
def _submit_job(
project_id: str,
files: List[Dict[str, str]],
chunk_size: int,
overlap: int,
batch_size: int,
store_text: bool,
) -> str:
job_id = hashlib.sha1(f"{project_id}{time.time()}".encode()).hexdigest()[:12]
st = JobState(job_id=job_id, project_id=project_id, stage="pending", messages=[])
JOBS[job_id] = st
LOG.info("Job %s créé – %d fichiers", job_id, len(files))
EXECUTOR.submit(
_do_index_job,
st,
files,
chunk_size,
overlap,
batch_size,
store_text,
)
st.stage = "queued"
return job_id
# --------------------------------------------------------------------------- #
# FASTAPI
# --------------------------------------------------------------------------- #
fastapi_app = FastAPI(title="remote-indexer-async", version="3.0.0")
fastapi_app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
class FileItem(BaseModel):
path: str
text: str
class IndexRequest(BaseModel):
project_id: str
files: List[FileItem]
chunk_size: int = 200
overlap: int = 20
batch_size: int = 32
store_text: bool = True # on peut désactiver via le payload ou env
@fastapi_app.get("/health")
def health():
return {
"ok": True,
"service": "remote-indexer-async",
"provider": EMB_PROVIDER,
"model": EMB_MODEL if EMB_PROVIDER != "dummy" else None,
"cache_root": os.getenv("CACHE_ROOT", "/tmp/.cache"),
"workers": MAX_WORKERS,
"data_root": DATA_ROOT,
"emb_dim": EMB_DIM,
}
@fastapi_app.post("/index")
def index(req: IndexRequest):
"""
Lancement asynchrone : renvoie immédiatement un `job_id`.
"""
try:
files = [fi.model_dump() for fi in req.files]
job_id = _submit_job(
project_id=req.project_id,
files=files,
chunk_size=int(req.chunk_size),
overlap=int(req.overlap),
batch_size=int(req.batch_size),
store_text=bool(req.store_text),
)
return {"job_id": job_id}
except Exception as e:
LOG.exception("Erreur soumission index")
raise HTTPException(status_code=500, detail=str(e))
@fastapi_app.get("/status/{job_id}")
def status(job_id: str):
st = JOBS.get(job_id)
if not st:
raise HTTPException(status_code=404, detail="job inconnu")
return JSONResponse(st.model_dump())
class SearchRequest(BaseModel):
project_id: str
query: str
k: int = 5
@fastapi_app.post("/search")
def search(req: SearchRequest):
base, ds_dir, fx_dir = _proj_dirs(req.project_id)
# Vérifier que l’index existe
if not (os.path.isfile(os.path.join(fx_dir, "emb.faiss")) and
os.path.isfile(os.path.join(ds_dir, "data.jsonl"))):
raise HTTPException(status_code=409, detail="Index non prêt (reviens plus tard)")
rows = _load_dataset(ds_dir)
if not rows:
raise HTTPException(status_code=404, detail="dataset introuvable")
# Embedding de la requête (même provider que l’index)
if EMB_PROVIDER == "dummy":
q = _emb_dummy([req.query], dim=EMB_DIM)[0:1, :]
elif EMB_PROVIDER == "st":
q = _emb_st([req.query])[0:1, :]
else:
q = _emb_hf([req.query])[0:1, :]
# Recherche FAISS (mmap)
index = _load_faiss(fx_dir)
if index.d != q.shape[1]:
raise HTTPException(
status_code=500,
detail=f"dim incompatibles : index.d={index.d} vs query={q.shape[1]}",
)
scores, ids = index.search(q, int(max(1, req.k)))
ids = ids[0].tolist()
scores = scores[0].tolist()
out = []
for idx, sc in zip(ids, scores):
if idx < 0 or idx >= len(rows):
continue
r = rows[idx]
out.append({"path": r.get("path"), "text": r.get("text"), "score": float(sc)})
return {"results": out}
# --------------------------------------------------------------------------- #
# EXPORT ARTIFACTS (gzip)
# --------------------------------------------------------------------------- #
@fastapi_app.get("/artifacts/{project_id}/dataset")
def download_dataset(project_id: str):
_, ds_dir, _ = _proj_dirs(project_id)
if not os.path.isdir(ds_dir):
raise HTTPException(status_code=404, detail="Dataset introuvable")
buf = _tar_dir_to_bytes(ds_dir)
hdr = {"Content-Disposition": f'attachment; filename="{project_id}_dataset.tgz"'}
return StreamingResponse(io.BytesIO(buf), media_type="application/gzip", headers=hdr)
@fastapi_app.get("/artifacts/{project_id}/faiss")
def download_faiss(project_id: str):
_, _, fx_dir = _proj_dirs(project_id)
if not os.path.isdir(fx_dir):
raise HTTPException(status_code=404, detail="FAISS introuvable")
buf = _tar_dir_to_bytes(fx_dir)
hdr = {"Content-Disposition": f'attachment; filename="{project_id}_faiss.tgz"'}
return StreamingResponse(io.BytesIO(buf), media_type="application/gzip", headers=hdr)
# --------------------------------------------------------------------------- #
# GRADIO UI (facultatif – test rapide)
# --------------------------------------------------------------------------- #
def _ui_index(project_id: str, sample_text: str):
files = [{"path": "sample.txt", "text": sample_text}]
try:
req = IndexRequest(project_id=project_id, files=[FileItem(**f) for f in files])
except Exception as e:
return f"❌ Validation : {e}"
try:
res = index(req)
return f"✅ Job lancé : {res['job_id']}"
except Exception as e:
return f"❌ Erreur : {e}"
def _ui_search(project_id: str, query: str, k: int):
try:
res = search(SearchRequest(project_id=project_id, query=query, k=int(k)))
return json.dumps(res, ensure_ascii=False, indent=2)
except Exception as e:
return f"❌ Erreur : {e}"
with gr.Blocks(title="Remote Indexer (Async – Optimisé)", analytics_enabled=False) as ui:
gr.Markdown("## Remote Indexer — Async (FAISS quantisé, mmap, texte optionnel)")
with gr.Row():
pid = gr.Textbox(label="Project ID", value="DEMO")
txt = gr.Textbox(label="Texte d’exemple", lines=4, value="Alpha bravo charlie delta echo foxtrot.")
btn_idx = gr.Button("Lancer index (sample)")
out_idx = gr.Textbox(label="Résultat")
btn_idx.click(_ui_index, inputs=[pid, txt], outputs=[out_idx])
with gr.Row():
q = gr.Textbox(label="Query", value="alpha")
k = gr.Slider(1, 20, value=5, step=1, label="Top‑K")
btn_q = gr.Button("Rechercher")
out_q = gr.Code(label="Résultats")
btn_q.click(_ui_search, inputs=[pid, q, k], outputs=[out_q])
# Monte l’UI Gradio sur le même serveur FastAPI
fastapi_app = gr.mount_gradio_app(fastapi_app, ui, path="/ui")
# --------------------------------------------------------------------------- #
# MAIN
# --------------------------------------------------------------------------- #
if __name__ == "__main__":
import uvicorn
LOG.info("Démarrage Uvicorn – port %s – UI disponible à /ui", PORT)
uvicorn.run(fastapi_app, host="0.0.0.0", port=PORT) |