File size: 3,597 Bytes
b908f51
 
 
 
2d3238e
4bea016
b908f51
5b4ee5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
521ddf5
5b4ee5e
 
 
 
b908f51
5b4ee5e
f02352c
5f0be19
4bdbfb1
5b4ee5e
2d3238e
5b4ee5e
 
 
 
 
521ddf5
5f0be19
5b4ee5e
 
 
5f0be19
5b4ee5e
 
521ddf5
 
 
 
 
 
 
 
 
 
 
970c966
 
 
 
 
 
521ddf5
 
 
 
 
 
 
 
970c966
 
 
521ddf5
 
 
 
5b4ee5e
 
 
 
5f0be19
521ddf5
f02352c
8b59b01
5f0be19
8b59b01
5f0be19
 
8b59b01
5f0be19
8b59b01
5f0be19
 
 
 
 
970c966
 
 
 
 
 
8b59b01
b908f51
 
 
 
5529a00
b908f51
 
 
 
 
 
 
 
 
 
 
 
 
5529a00
b908f51
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "624c83c1",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "DNN(\n",
       "  (fc_in): Linear(in_features=144, out_features=512, bias=True)\n",
       "  (residual_blocks): ModuleList(\n",
       "    (0-3): 4 x ResidualBlock(\n",
       "      (ln1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)\n",
       "      (fc1): Linear(in_features=512, out_features=1024, bias=True)\n",
       "      (ln2): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)\n",
       "      (fc2): Linear(in_features=1024, out_features=512, bias=True)\n",
       "    )\n",
       "  )\n",
       "  (fc_value): Sequential(\n",
       "    (0): Linear(in_features=512, out_features=64, bias=True)\n",
       "    (1): ReLU()\n",
       "    (2): Linear(in_features=64, out_features=1, bias=True)\n",
       "  )\n",
       "  (fc_policy): Sequential(\n",
       "    (0): Linear(in_features=512, out_features=64, bias=True)\n",
       "    (1): ReLU()\n",
       "    (2): Linear(in_features=64, out_features=12, bias=True)\n",
       "  )\n",
       ")"
      ]
     },
     "execution_count": 101,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "from rlcube.models.models import DNN\n",
    "from rlcube.envs.cube2 import Cube2Env\n",
    "import torch\n",
    "\n",
    "net = DNN()\n",
    "net.load(\"checkpoints/checkpoint_final.pth\")\n",
    "net.eval()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 103,
   "id": "defde44e",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[7, 11, 6, 7, 7, 10, 1, 0, 3, 3]\n",
      "tensor([[ 0.9634],\n",
      "        [-0.0930],\n",
      "        [-0.8327],\n",
      "        [-0.0930],\n",
      "        [-0.8955],\n",
      "        [-1.8250],\n",
      "        [-4.0525],\n",
      "        [-1.8250],\n",
      "        [-3.0264],\n",
      "        [-3.6782]], grad_fn=<AddmmBackward0>)\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "  1%|          | 8/1000 [00:00<00:10, 99.11it/s]"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[0, 2, 5, 2, 8, 6]\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n"
     ]
    }
   ],
   "source": [
    "import numpy as np\n",
    "from rlcube.models.search import MonteCarloTree\n",
    "\n",
    "env = Cube2Env()\n",
    "\n",
    "actions = []\n",
    "obs = []\n",
    "for _ in range(10):\n",
    "    action = env.action_space.sample()\n",
    "    actions.append(action.item())\n",
    "    env.step(action)\n",
    "    obs.append(env.obs())\n",
    "\n",
    "obs = torch.tensor(np.array(obs), dtype=torch.float32)\n",
    "values, policies = net(obs)\n",
    "print(actions)\n",
    "print(values)\n",
    "\n",
    "\n",
    "tree = MonteCarloTree(env.obs(), max_simulations=1000)\n",
    "if tree.is_solved:\n",
    "    print([action for _, action in tree.solved_path])"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": ".venv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}