Spaces:
Paused
Paused
File size: 18,636 Bytes
3b5ff37 7c1bfd4 d7c623e 770f85b 3b5ff37 3f8bf2e 3b5ff37 7c1bfd4 3f8bf2e 3b5ff37 1bcfa92 3b5ff37 0ef1c82 3b5ff37 d7c623e 1bcfa92 3b5ff37 1bcfa92 3b5ff37 0ef1c82 3b5ff37 0ef1c82 3b5ff37 79815c9 3b5ff37 0ef1c82 3f8bf2e 3b5ff37 0ef1c82 71052e8 3f8bf2e 0ef1c82 3f8bf2e d795566 3b5ff37 0ef1c82 3b5ff37 71052e8 3b5ff37 0ef1c82 1bcfa92 3b5ff37 0ef1c82 3b5ff37 0ef1c82 3b5ff37 71052e8 3b5ff37 0ef1c82 3b5ff37 1bcfa92 0ef1c82 3b5ff37 0ef1c82 3b5ff37 0ef1c82 3b5ff37 1bcfa92 71052e8 3b5ff37 0ef1c82 3b5ff37 0ef1c82 3b5ff37 0ef1c82 3b5ff37 0ef1c82 3b5ff37 0ef1c82 3b5ff37 7c1bfd4 3b5ff37 71052e8 7c1bfd4 3b5ff37 7c1bfd4 3b5ff37 0ef1c82 7c1bfd4 3b5ff37 7c1bfd4 3b5ff37 0ef1c82 3b5ff37 d795566 3b5ff37 7c1bfd4 3b5ff37 0ef1c82 3b5ff37 7c1bfd4 3b5ff37 7c1bfd4 3b5ff37 0ef1c82 fec3865 7c1bfd4 3b5ff37 7c1bfd4 3b5ff37 2134e1a 0ef1c82 3b5ff37 0ef1c82 3b5ff37 71052e8 0ef1c82 7c1bfd4 0ef1c82 3b5ff37 0ef1c82 7c1bfd4 3b5ff37 0ef1c82 3b5ff37 0ef1c82 3b5ff37 71052e8 0ef1c82 3b5ff37 0ef1c82 3b5ff37 0ef1c82 3b5ff37 71052e8 3b5ff37 7c1bfd4 3b5ff37 7c1bfd4 3b5ff37 7c1bfd4 71052e8 7c1bfd4 71052e8 7c1bfd4 71052e8 7c1bfd4 3b5ff37 0ef1c82 3b5ff37 d0d8baa 3b5ff37 7c1bfd4 3b5ff37 7c1bfd4 3b5ff37 0ef1c82 3b5ff37 d0d8baa 3b5ff37 0ef1c82 d0d8baa 3b5ff37 83047a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 |
# FILE: api/ltx_server_refactored_complete.py
# DESCRIPTION: Final high-level orchestrator for LTX-Video generation.
# This version features a unified generation workflow, random seed generation,
# delegation to specialized modules, and advanced debugging capabilities.
import gc
import json
import logging
import os
import shutil
import sys
import tempfile
import time
from pathlib import Path
from typing import Dict, List, Optional, Tuple
import torch
import yaml
import numpy as np
from huggingface_hub import hf_hub_download
# ==============================================================================
# --- SETUP E IMPORTAÇÕES DO PROJETO ---
# ==============================================================================
# Configuração de logging e supressão de warnings
import warnings
warnings.filterwarnings("ignore")
logging.getLogger("huggingface_hub").setLevel(logging.ERROR)
log_level = os.environ.get("ADUC_LOG_LEVEL", "INFO").upper()
logging.basicConfig(level=log_level, format='[%(levelname)s] [%(name)s] %(message)s')
# --- Constantes de Configuração ---
DEPS_DIR = Path("/data")
LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video"
RESULTS_DIR = Path("/app/output")
DEFAULT_FPS = 24.0
FRAMES_ALIGNMENT = 8
LTX_REPO_ID = "Lightricks/LTX-Video" # Repositório de onde os modelos são baixados
# Garante que a biblioteca LTX-Video seja importável
def add_deps_to_path():
repo_path = str(LTX_VIDEO_REPO_DIR.resolve())
if repo_path not in sys.path:
sys.path.insert(0, repo_path)
logging.info(f"[ltx_server] LTX-Video repository added to sys.path: {repo_path}")
#add_deps_to_path()
# --- Módulos da nossa Arquitetura ---
try:
from api.gpu_manager import gpu_manager
from managers.vae_manager import vae_manager_singleton
from tools.video_encode_tool import video_encode_tool_singleton
from api.ltx.ltx_utils import (
build_ltx_pipeline_on_cpu,
seed_everything,
load_image_to_tensor_with_resize_and_crop,
ConditioningItem,
)
from api.utils.debug_utils import log_function_io
except ImportError as e:
logging.critical(f"A crucial import from the local API/architecture failed. Error: {e}", exc_info=True)
sys.exit(1)
# ==============================================================================
# --- FUNÇÕES AUXILIARES DO ORQUESTRADOR ---
# ==============================================================================
@log_function_io
def calculate_padding(orig_h: int, orig_w: int, target_h: int, target_w: int) -> Tuple[int, int, int, int]:
"""Calculates symmetric padding required to meet target dimensions."""
pad_h = target_h - orig_h
pad_w = target_w - orig_w
pad_top = pad_h // 2
pad_bottom = pad_h - pad_top
pad_left = pad_w // 2
pad_right = pad_w - pad_left
return (pad_left, pad_right, pad_top, pad_bottom)
# ==============================================================================
# --- CLASSE DE SERVIÇO (O ORQUESTRADOR) ---
# ==============================================================================
class VideoService:
"""
Orchestrates the high-level logic of video generation, delegating low-level
tasks to specialized managers and utility modules.
"""
@log_function_io
def __init__(self):
t0 = time.perf_counter()
logging.info("Initializing VideoService Orchestrator...")
RESULTS_DIR.mkdir(parents=True, exist_ok=True)
target_main_device_str = str(gpu_manager.get_ltx_device())
target_vae_device_str = str(gpu_manager.get_ltx_vae_device())
logging.info(f"LTX allocated to devices: Main='{target_main_device_str}', VAE='{target_vae_device_str}'")
self.config = self._load_config()
self._resolve_model_paths_from_cache() # Etapa crítica para encontrar os modelos
self.pipeline, self.latent_upsampler = build_ltx_pipeline_on_cpu(self.config)
self.main_device = torch.device("cpu")
self.vae_device = torch.device("cpu")
self.move_to_device(main_device_str=target_main_device_str, vae_device_str=target_vae_device_str)
self._apply_precision_policy()
vae_manager_singleton.attach_pipeline(self.pipeline, device=self.vae_device, autocast_dtype=self.runtime_autocast_dtype)
logging.info(f"VideoService ready. Startup time: {time.perf_counter()-t0:.2f}s")
def _load_config(self) -> Dict:
"""Loads the YAML configuration file."""
config_path = LTX_VIDEO_REPO_DIR / "configs" / "ltxv-13b-0.9.8-distilled-fp8.yaml"
logging.info(f"Loading config from: {config_path}")
with open(config_path, "r") as file:
return yaml.safe_load(file)
def _resolve_model_paths_from_cache(self):
"""
Uses hf_hub_download to find the absolute paths to model files in the cache,
updating the in-memory config. This makes the app resilient to cache structure.
"""
logging.info("Resolving model paths from Hugging Face cache...")
cache_dir = os.environ.get("HF_HOME")
try:
# Resolve o caminho do checkpoint principal
main_ckpt_filename = self.config["checkpoint_path"]
main_ckpt_path = hf_hub_download(
repo_id=LTX_REPO_ID,
filename=main_ckpt_filename,
cache_dir=cache_dir
)
self.config["checkpoint_path"] = main_ckpt_path
logging.info(f" -> Main checkpoint resolved to: {main_ckpt_path}")
# Resolve o caminho do upsampler, se existir
if self.config.get("spatial_upscaler_model_path"):
upscaler_filename = self.config["spatial_upscaler_model_path"]
upscaler_path = hf_hub_download(
repo_id=LTX_REPO_ID,
filename=upscaler_filename,
cache_dir=cache_dir
)
self.config["spatial_upscaler_model_path"] = upscaler_path
logging.info(f" -> Spatial upscaler resolved to: {upscaler_path}")
except Exception as e:
logging.critical(f"Failed to resolve model paths. Ensure setup.py ran correctly. Error: {e}", exc_info=True)
sys.exit(1)
@log_function_io
def move_to_device(self, main_device_str: str, vae_device_str: str):
"""Moves pipeline components to their designated target devices."""
target_main_device = torch.device(main_device_str)
target_vae_device = torch.device(vae_device_str)
logging.info(f"Moving LTX models -> Main Pipeline: {target_main_device}, VAE: {target_vae_device}")
self.main_device = target_main_device
self.pipeline.to(self.main_device)
self.vae_device = target_vae_device
self.pipeline.vae.to(self.vae_device)
if self.latent_upsampler: self.latent_upsampler.to(self.main_device)
logging.info("LTX models successfully moved to target devices.")
def move_to_cpu(self):
"""Moves all LTX components to CPU to free VRAM for other services."""
self.move_to_device(main_device_str="cpu", vae_device_str="cpu")
if torch.cuda.is_available(): torch.cuda.empty_cache()
def finalize(self):
"""Cleans up GPU memory after a generation task."""
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
try: torch.cuda.ipc_collect();
except Exception: pass
# ==========================================================================
# --- LÓGICA DE NEGÓCIO: ORQUESTRADOR PÚBLICO UNIFICADO ---
# ==========================================================================
@log_function_io
def generate_low_resolution(self, prompt: str, **kwargs) -> Tuple[Optional[str], Optional[str], Optional[int]]:
"""
[UNIFIED ORCHESTRATOR] Generates a low-resolution video from a prompt.
Handles both single-line and multi-line prompts transparently.
"""
logging.info("Starting unified low-resolution generation (random seed)...")
used_seed = self._get_random_seed()
seed_everything(used_seed)
logging.info(f"Using randomly generated seed: {used_seed}")
prompt_list = [p.strip() for p in prompt.splitlines() if p.strip()]
if not prompt_list: raise ValueError("Prompt is empty or contains no valid lines.")
is_narrative = len(prompt_list) > 1
logging.info(f"Generation mode detected: {'Narrative' if is_narrative else 'Simple'} ({len(prompt_list)} scene(s)).")
num_chunks = len(prompt_list)
total_frames = self._calculate_aligned_frames(kwargs.get("duration", 4.0))
frames_per_chunk = max(FRAMES_ALIGNMENT, (total_frames // num_chunks // FRAMES_ALIGNMENT) * FRAMES_ALIGNMENT)
overlap_frames = self.config.get("overlap_frames", 8) if is_narrative else 0
temp_latent_paths = []
overlap_condition_item = None
try:
for i, chunk_prompt in enumerate(prompt_list):
logging.info(f"Processing scene {i+1}/{num_chunks}: '{chunk_prompt[:50]}...'")
if i == num_chunks - 1:
processed_frames = (num_chunks - 1) * frames_per_chunk
current_frames = total_frames - processed_frames
else:
current_frames = frames_per_chunk
if i > 0: current_frames += overlap_frames
current_conditions = kwargs.get("initial_conditions", []) if i == 0 else []
if overlap_condition_item: current_conditions.append(overlap_condition_item)
chunk_latents = self._generate_single_chunk_low(
prompt=chunk_prompt, num_frames=current_frames, seed=used_seed + i,
conditioning_items=current_conditions, **kwargs
)
if chunk_latents is None: raise RuntimeError(f"Failed to generate latents for scene {i+1}.")
if is_narrative and i < num_chunks - 1:
overlap_latents = chunk_latents[:, :, -overlap_frames:, :, :].clone()
overlap_condition_item = ConditioningItem(media_item=overlap_latents, media_frame_number=0, conditioning_strength=1.0)
if i > 0: chunk_latents = chunk_latents[:, :, overlap_frames:, :, :]
chunk_path = RESULTS_DIR / f"temp_chunk_{i}_{used_seed}.pt"
torch.save(chunk_latents.cpu(), chunk_path)
temp_latent_paths.append(chunk_path)
base_filename = "narrative_video" if is_narrative else "single_video"
return self._finalize_generation(temp_latent_paths, base_filename, used_seed)
except Exception as e:
logging.error(f"Error during unified generation: {e}", exc_info=True)
return None, None, None
finally:
for path in temp_latent_paths:
if path.exists(): path.unlink()
self.finalize()
# ==========================================================================
# --- UNIDADES DE TRABALHO E HELPERS INTERNOS ---
# ==========================================================================
@log_function_io
def _generate_single_chunk_low(self, **kwargs) -> Optional[torch.Tensor]:
"""[WORKER] Calls the pipeline to generate a single chunk of latents."""
height_padded, width_padded = (self._align(d) for d in (kwargs['height'], kwargs['width']))
downscale_factor = self.config.get("downscale_factor", 0.6666666)
vae_scale_factor = self.pipeline.vae_scale_factor
downscaled_height = self._align(int(height_padded * downscale_factor), vae_scale_factor)
downscaled_width = self._align(int(width_padded * downscale_factor), vae_scale_factor)
first_pass_config = self.config.get("first_pass", {}).copy()
if kwargs.get("ltx_configs_override"):
self._apply_ui_overrides(first_pass_config, kwargs["ltx_configs_override"])
pipeline_kwargs = {
"prompt": kwargs['prompt'], "negative_prompt": kwargs['negative_prompt'],
"height": downscaled_height, "width": downscaled_width, "num_frames": kwargs['num_frames'],
"frame_rate": DEFAULT_FPS, "generator": torch.Generator(device=self.main_device).manual_seed(kwargs['seed']),
"output_type": "latent", "conditioning_items": kwargs['conditioning_items'], **first_pass_config
}
with torch.autocast(device_type=self.main_device.type, dtype=self.runtime_autocast_dtype, enabled="cuda" in self.main_device.type):
latents_raw = self.pipeline(**pipeline_kwargs).images
return latents_raw.to(self.main_device)
@log_function_io
def _finalize_generation(self, temp_latent_paths: List[Path], base_filename: str, seed: int) -> Tuple[str, str, int]:
"""Consolidates latents, decodes them to video, and saves final artifacts."""
logging.info("Finalizing generation: decoding latents to video.")
all_tensors_cpu = [torch.load(p) for p in temp_latent_paths]
final_latents = torch.cat(all_tensors_cpu, dim=2)
final_latents_path = RESULTS_DIR / f"latents_{base_filename}_{seed}.pt"
torch.save(final_latents, final_latents_path)
logging.info(f"Final latents saved to: {final_latents_path}")
pixel_tensor = vae_manager_singleton.decode(
final_latents, decode_timestep=float(self.config.get("decode_timestep", 0.05))
)
video_path = self._save_and_log_video(pixel_tensor, f"{base_filename}_{seed}")
return str(video_path), str(final_latents_path), seed
@log_function_io
def prepare_condition_items(self, items_list: List, height: int, width: int, num_frames: int) -> List[ConditioningItem]:
"""[UNIFIED] Prepares ConditioningItems from a mixed list of file paths and tensors."""
if not items_list: return []
height_padded, width_padded = self._align(height), self._align(width)
padding_values = calculate_padding(height, width, height_padded, width_padded)
conditioning_items = []
for media_item, frame, weight in items_list:
if isinstance(media_item, str):
tensor = load_image_to_tensor_with_resize_and_crop(media_item, height, width)
tensor = torch.nn.functional.pad(tensor, padding_values)
tensor = tensor.to(self.main_device, dtype=self.runtime_autocast_dtype)
elif isinstance(media_item, torch.Tensor):
tensor = media_item.to(self.main_device, dtype=self.runtime_autocast_dtype)
else:
logging.warning(f"Unknown conditioning media type: {type(media_item)}. Skipping.")
continue
safe_frame = max(0, min(int(frame), num_frames - 1))
conditioning_items.append(ConditioningItem(tensor, safe_frame, float(weight)))
return conditioning_items
def _apply_ui_overrides(self, config_dict: Dict, overrides: Dict):
"""Applies advanced settings from the UI to a config dictionary."""
# Override step counts
for key in ["num_inference_steps", "skip_initial_inference_steps", "skip_final_inference_steps"]:
ui_value = overrides.get(key)
if ui_value and ui_value > 0:
config_dict[key] = ui_value
logging.info(f"Override: '{key}' set to {ui_value} by UI.")
# Override guidance settings
preset = overrides.get("guidance_preset", "Padrão (Recomendado)")
guidance_overrides = {}
if preset == "Agressivo":
guidance_overrides = {"guidance_scale": [1, 2, 8, 12, 8, 2, 1], "stg_scale": [0, 0, 5, 6, 5, 3, 2]}
elif preset == "Suave":
guidance_overrides = {"guidance_scale": [1, 1, 4, 5, 4, 1, 1], "stg_scale": [0, 0, 2, 2, 2, 1, 0]}
elif preset == "Customizado":
try:
guidance_overrides["guidance_scale"] = json.loads(overrides["guidance_scale_list"])
guidance_overrides["stg_scale"] = json.loads(overrides["stg_scale_list"])
except Exception as e:
logging.warning(f"Failed to parse custom guidance values: {e}. Using defaults.")
if guidance_overrides:
config_dict.update(guidance_overrides)
logging.info(f"Applying '{preset}' guidance preset overrides.")
def _save_and_log_video(self, pixel_tensor: torch.Tensor, base_filename: str) -> Path:
with tempfile.TemporaryDirectory() as temp_dir:
temp_path = os.path.join(temp_dir, f"{base_filename}.mp4")
video_encode_tool_singleton.save_video_from_tensor(pixel_tensor, temp_path, fps=DEFAULT_FPS)
final_path = RESULTS_DIR / f"{base_filename}.mp4"
shutil.move(temp_path, final_path)
logging.info(f"Video saved successfully to: {final_path}")
return final_path
def _apply_precision_policy(self):
precision = str(self.config.get("precision", "bfloat16")).lower()
if precision in ["float8_e4m3fn", "bfloat16"]: self.runtime_autocast_dtype = torch.bfloat16
elif precision == "mixed_precision": self.runtime_autocast_dtype = torch.float16
else: self.runtime_autocast_dtype = torch.float32
logging.info(f"Runtime precision policy set for autocast: {self.runtime_autocast_dtype}")
def _align(self, dim: int, alignment: int = FRAMES_ALIGNMENT) -> int:
return ((dim - 1) // alignment + 1) * alignment
def _calculate_aligned_frames(self, duration_s: float, min_frames: int = 1) -> int:
num_frames = int(round(duration_s * DEFAULT_FPS))
aligned_frames = self._align(num_frames)
return max(aligned_frames, min_frames)
def _get_random_seed(self) -> int:
"""Always generates and returns a new random seed."""
return random.randint(0, 2**32 - 1)
# ==============================================================================
# --- INSTANCIAÇÃO SINGLETON ---
# ==============================================================================
try:
video_generation_service = VideoService()
logging.info("Global VideoService orchestrator instance created successfully.")
except Exception as e:
logging.critical(f"Failed to initialize VideoService: {e}", exc_info=True)
sys.exit(1) |