File size: 18,636 Bytes
3b5ff37
7c1bfd4
 
 
d7c623e
770f85b
3b5ff37
 
 
 
 
 
 
3f8bf2e
3b5ff37
7c1bfd4
3f8bf2e
3b5ff37
 
1bcfa92
3b5ff37
 
0ef1c82
3b5ff37
d7c623e
1bcfa92
 
 
 
 
 
 
 
3b5ff37
 
 
 
 
1bcfa92
3b5ff37
0ef1c82
3b5ff37
 
 
 
0ef1c82
3b5ff37
79815c9
3b5ff37
0ef1c82
3f8bf2e
 
3b5ff37
 
0ef1c82
 
 
 
 
 
71052e8
3f8bf2e
0ef1c82
3f8bf2e
d795566
3b5ff37
0ef1c82
3b5ff37
 
71052e8
3b5ff37
0ef1c82
1bcfa92
3b5ff37
 
 
 
 
 
 
 
0ef1c82
3b5ff37
 
 
0ef1c82
 
 
 
3b5ff37
71052e8
3b5ff37
 
0ef1c82
3b5ff37
 
 
 
 
 
 
1bcfa92
 
0ef1c82
3b5ff37
 
 
 
 
 
0ef1c82
3b5ff37
 
 
 
0ef1c82
3b5ff37
 
 
 
1bcfa92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71052e8
3b5ff37
0ef1c82
3b5ff37
 
 
0ef1c82
3b5ff37
 
 
 
0ef1c82
3b5ff37
 
 
0ef1c82
3b5ff37
0ef1c82
3b5ff37
 
 
 
 
 
 
 
 
 
7c1bfd4
3b5ff37
 
71052e8
7c1bfd4
 
 
 
 
 
 
3b5ff37
7c1bfd4
3b5ff37
 
0ef1c82
7c1bfd4
 
 
3b5ff37
 
 
7c1bfd4
 
3b5ff37
0ef1c82
3b5ff37
 
d795566
3b5ff37
7c1bfd4
 
 
 
 
 
 
 
 
 
3b5ff37
 
 
 
0ef1c82
 
3b5ff37
7c1bfd4
3b5ff37
7c1bfd4
3b5ff37
 
 
 
 
 
 
0ef1c82
fec3865
7c1bfd4
 
3b5ff37
7c1bfd4
3b5ff37
2134e1a
0ef1c82
3b5ff37
 
 
 
0ef1c82
3b5ff37
 
71052e8
0ef1c82
7c1bfd4
0ef1c82
3b5ff37
 
 
 
 
 
0ef1c82
7c1bfd4
3b5ff37
 
0ef1c82
 
 
 
3b5ff37
 
 
 
 
0ef1c82
3b5ff37
71052e8
0ef1c82
 
3b5ff37
0ef1c82
3b5ff37
 
 
 
 
 
 
0ef1c82
3b5ff37
 
 
 
71052e8
3b5ff37
7c1bfd4
3b5ff37
 
 
 
 
7c1bfd4
 
 
 
 
 
 
 
 
 
 
3b5ff37
 
 
 
7c1bfd4
 
 
 
 
 
 
 
 
 
 
 
71052e8
7c1bfd4
71052e8
7c1bfd4
71052e8
 
7c1bfd4
 
 
 
 
 
 
 
3b5ff37
 
 
 
0ef1c82
3b5ff37
 
 
 
d0d8baa
3b5ff37
 
 
 
 
 
 
 
 
 
 
 
 
7c1bfd4
3b5ff37
7c1bfd4
 
 
3b5ff37
 
0ef1c82
3b5ff37
d0d8baa
3b5ff37
0ef1c82
d0d8baa
3b5ff37
83047a1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
# FILE: api/ltx_server_refactored_complete.py
# DESCRIPTION: Final high-level orchestrator for LTX-Video generation.
# This version features a unified generation workflow, random seed generation,
# delegation to specialized modules, and advanced debugging capabilities.

import gc
import json
import logging
import os
import shutil
import sys
import tempfile
import time
from pathlib import Path
from typing import Dict, List, Optional, Tuple

import torch
import yaml
import numpy as np
from huggingface_hub import hf_hub_download

# ==============================================================================
# --- SETUP E IMPORTAÇÕES DO PROJETO ---
# ==============================================================================

# Configuração de logging e supressão de warnings
import warnings
warnings.filterwarnings("ignore")
logging.getLogger("huggingface_hub").setLevel(logging.ERROR)
log_level = os.environ.get("ADUC_LOG_LEVEL", "INFO").upper()
logging.basicConfig(level=log_level, format='[%(levelname)s] [%(name)s] %(message)s')

# --- Constantes de Configuração ---
DEPS_DIR = Path("/data")
LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video"
RESULTS_DIR = Path("/app/output")
DEFAULT_FPS = 24.0
FRAMES_ALIGNMENT = 8
LTX_REPO_ID = "Lightricks/LTX-Video" # Repositório de onde os modelos são baixados

# Garante que a biblioteca LTX-Video seja importável
def add_deps_to_path():
    repo_path = str(LTX_VIDEO_REPO_DIR.resolve())
    if repo_path not in sys.path:
        sys.path.insert(0, repo_path)
        logging.info(f"[ltx_server] LTX-Video repository added to sys.path: {repo_path}")

#add_deps_to_path()

# --- Módulos da nossa Arquitetura ---
try:
    from api.gpu_manager import gpu_manager
    from managers.vae_manager import vae_manager_singleton
    from tools.video_encode_tool import video_encode_tool_singleton
    from api.ltx.ltx_utils import (
        build_ltx_pipeline_on_cpu,
        seed_everything,
        load_image_to_tensor_with_resize_and_crop,
        ConditioningItem,
    )
    from api.utils.debug_utils import log_function_io
except ImportError as e:
    logging.critical(f"A crucial import from the local API/architecture failed. Error: {e}", exc_info=True)
    sys.exit(1)

# ==============================================================================
# --- FUNÇÕES AUXILIARES DO ORQUESTRADOR ---
# ==============================================================================

@log_function_io
def calculate_padding(orig_h: int, orig_w: int, target_h: int, target_w: int) -> Tuple[int, int, int, int]:
    """Calculates symmetric padding required to meet target dimensions."""
    pad_h = target_h - orig_h
    pad_w = target_w - orig_w
    pad_top = pad_h // 2
    pad_bottom = pad_h - pad_top
    pad_left = pad_w // 2
    pad_right = pad_w - pad_left
    return (pad_left, pad_right, pad_top, pad_bottom)

# ==============================================================================
# --- CLASSE DE SERVIÇO (O ORQUESTRADOR) ---
# ==============================================================================

class VideoService:
    """
    Orchestrates the high-level logic of video generation, delegating low-level
    tasks to specialized managers and utility modules.
    """

    @log_function_io
    def __init__(self):
        t0 = time.perf_counter()
        logging.info("Initializing VideoService Orchestrator...")
        RESULTS_DIR.mkdir(parents=True, exist_ok=True)

        target_main_device_str = str(gpu_manager.get_ltx_device())
        target_vae_device_str = str(gpu_manager.get_ltx_vae_device())
        logging.info(f"LTX allocated to devices: Main='{target_main_device_str}', VAE='{target_vae_device_str}'")

        self.config = self._load_config()
        self._resolve_model_paths_from_cache() # Etapa crítica para encontrar os modelos

        self.pipeline, self.latent_upsampler = build_ltx_pipeline_on_cpu(self.config)

        self.main_device = torch.device("cpu")
        self.vae_device = torch.device("cpu")
        self.move_to_device(main_device_str=target_main_device_str, vae_device_str=target_vae_device_str)

        self._apply_precision_policy()
        vae_manager_singleton.attach_pipeline(self.pipeline, device=self.vae_device, autocast_dtype=self.runtime_autocast_dtype)
        logging.info(f"VideoService ready. Startup time: {time.perf_counter()-t0:.2f}s")

    def _load_config(self) -> Dict:
        """Loads the YAML configuration file."""
        config_path = LTX_VIDEO_REPO_DIR / "configs" / "ltxv-13b-0.9.8-distilled-fp8.yaml"
        logging.info(f"Loading config from: {config_path}")
        with open(config_path, "r") as file:
            return yaml.safe_load(file)

    def _resolve_model_paths_from_cache(self):
        """
        Uses hf_hub_download to find the absolute paths to model files in the cache,
        updating the in-memory config. This makes the app resilient to cache structure.
        """
        logging.info("Resolving model paths from Hugging Face cache...")
        cache_dir = os.environ.get("HF_HOME")
        try:
            # Resolve o caminho do checkpoint principal
            main_ckpt_filename = self.config["checkpoint_path"]
            main_ckpt_path = hf_hub_download(
                repo_id=LTX_REPO_ID,
                filename=main_ckpt_filename,
                cache_dir=cache_dir
            )
            self.config["checkpoint_path"] = main_ckpt_path
            logging.info(f"  -> Main checkpoint resolved to: {main_ckpt_path}")

            # Resolve o caminho do upsampler, se existir
            if self.config.get("spatial_upscaler_model_path"):
                upscaler_filename = self.config["spatial_upscaler_model_path"]
                upscaler_path = hf_hub_download(
                    repo_id=LTX_REPO_ID,
                    filename=upscaler_filename,
                    cache_dir=cache_dir
                )
                self.config["spatial_upscaler_model_path"] = upscaler_path
                logging.info(f"  -> Spatial upscaler resolved to: {upscaler_path}")
        except Exception as e:
            logging.critical(f"Failed to resolve model paths. Ensure setup.py ran correctly. Error: {e}", exc_info=True)
            sys.exit(1)

    @log_function_io
    def move_to_device(self, main_device_str: str, vae_device_str: str):
        """Moves pipeline components to their designated target devices."""
        target_main_device = torch.device(main_device_str)
        target_vae_device = torch.device(vae_device_str)
        logging.info(f"Moving LTX models -> Main Pipeline: {target_main_device}, VAE: {target_vae_device}")

        self.main_device = target_main_device
        self.pipeline.to(self.main_device)
        self.vae_device = target_vae_device
        self.pipeline.vae.to(self.vae_device)
        if self.latent_upsampler: self.latent_upsampler.to(self.main_device)
        logging.info("LTX models successfully moved to target devices.")

    def move_to_cpu(self):
        """Moves all LTX components to CPU to free VRAM for other services."""
        self.move_to_device(main_device_str="cpu", vae_device_str="cpu")
        if torch.cuda.is_available(): torch.cuda.empty_cache()

    def finalize(self):
        """Cleans up GPU memory after a generation task."""
        gc.collect()
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
            try: torch.cuda.ipc_collect();
            except Exception: pass

    # ==========================================================================
    # --- LÓGICA DE NEGÓCIO: ORQUESTRADOR PÚBLICO UNIFICADO ---
    # ==========================================================================

    @log_function_io
    def generate_low_resolution(self, prompt: str, **kwargs) -> Tuple[Optional[str], Optional[str], Optional[int]]:
        """
        [UNIFIED ORCHESTRATOR] Generates a low-resolution video from a prompt.
        Handles both single-line and multi-line prompts transparently.
        """
        logging.info("Starting unified low-resolution generation (random seed)...")
        used_seed = self._get_random_seed()
        seed_everything(used_seed)
        logging.info(f"Using randomly generated seed: {used_seed}")

        prompt_list = [p.strip() for p in prompt.splitlines() if p.strip()]
        if not prompt_list: raise ValueError("Prompt is empty or contains no valid lines.")
        
        is_narrative = len(prompt_list) > 1
        logging.info(f"Generation mode detected: {'Narrative' if is_narrative else 'Simple'} ({len(prompt_list)} scene(s)).")

        num_chunks = len(prompt_list)
        total_frames = self._calculate_aligned_frames(kwargs.get("duration", 4.0))
        frames_per_chunk = max(FRAMES_ALIGNMENT, (total_frames // num_chunks // FRAMES_ALIGNMENT) * FRAMES_ALIGNMENT)
        overlap_frames = self.config.get("overlap_frames", 8) if is_narrative else 0
        
        temp_latent_paths = []
        overlap_condition_item = None
        
        try:
            for i, chunk_prompt in enumerate(prompt_list):
                logging.info(f"Processing scene {i+1}/{num_chunks}: '{chunk_prompt[:50]}...'")
                
                if i == num_chunks - 1:
                    processed_frames = (num_chunks - 1) * frames_per_chunk
                    current_frames = total_frames - processed_frames
                else:
                    current_frames = frames_per_chunk
                
                if i > 0: current_frames += overlap_frames
                
                current_conditions = kwargs.get("initial_conditions", []) if i == 0 else []
                if overlap_condition_item: current_conditions.append(overlap_condition_item)

                chunk_latents = self._generate_single_chunk_low(
                    prompt=chunk_prompt, num_frames=current_frames, seed=used_seed + i,
                    conditioning_items=current_conditions, **kwargs
                )
                if chunk_latents is None: raise RuntimeError(f"Failed to generate latents for scene {i+1}.")

                if is_narrative and i < num_chunks - 1:
                    overlap_latents = chunk_latents[:, :, -overlap_frames:, :, :].clone()
                    overlap_condition_item = ConditioningItem(media_item=overlap_latents, media_frame_number=0, conditioning_strength=1.0)
                
                if i > 0: chunk_latents = chunk_latents[:, :, overlap_frames:, :, :]
                
                chunk_path = RESULTS_DIR / f"temp_chunk_{i}_{used_seed}.pt"
                torch.save(chunk_latents.cpu(), chunk_path)
                temp_latent_paths.append(chunk_path)
            
            base_filename = "narrative_video" if is_narrative else "single_video"
            return self._finalize_generation(temp_latent_paths, base_filename, used_seed)
        except Exception as e:
            logging.error(f"Error during unified generation: {e}", exc_info=True)
            return None, None, None
        finally:
            for path in temp_latent_paths:
                if path.exists(): path.unlink()
            self.finalize()

    # ==========================================================================
    # --- UNIDADES DE TRABALHO E HELPERS INTERNOS ---
    # ==========================================================================

    @log_function_io
    def _generate_single_chunk_low(self, **kwargs) -> Optional[torch.Tensor]:
        """[WORKER] Calls the pipeline to generate a single chunk of latents."""
        height_padded, width_padded = (self._align(d) for d in (kwargs['height'], kwargs['width']))
        downscale_factor = self.config.get("downscale_factor", 0.6666666)
        vae_scale_factor = self.pipeline.vae_scale_factor
        downscaled_height = self._align(int(height_padded * downscale_factor), vae_scale_factor)
        downscaled_width = self._align(int(width_padded * downscale_factor), vae_scale_factor)

        first_pass_config = self.config.get("first_pass", {}).copy()
        if kwargs.get("ltx_configs_override"):
            self._apply_ui_overrides(first_pass_config, kwargs["ltx_configs_override"])

        pipeline_kwargs = {
            "prompt": kwargs['prompt'], "negative_prompt": kwargs['negative_prompt'],
            "height": downscaled_height, "width": downscaled_width, "num_frames": kwargs['num_frames'],
            "frame_rate": DEFAULT_FPS, "generator": torch.Generator(device=self.main_device).manual_seed(kwargs['seed']),
            "output_type": "latent", "conditioning_items": kwargs['conditioning_items'], **first_pass_config
        }
        
        with torch.autocast(device_type=self.main_device.type, dtype=self.runtime_autocast_dtype, enabled="cuda" in self.main_device.type):
            latents_raw = self.pipeline(**pipeline_kwargs).images
        
        return latents_raw.to(self.main_device)

    @log_function_io
    def _finalize_generation(self, temp_latent_paths: List[Path], base_filename: str, seed: int) -> Tuple[str, str, int]:
        """Consolidates latents, decodes them to video, and saves final artifacts."""
        logging.info("Finalizing generation: decoding latents to video.")
        all_tensors_cpu = [torch.load(p) for p in temp_latent_paths]
        final_latents = torch.cat(all_tensors_cpu, dim=2)
        
        final_latents_path = RESULTS_DIR / f"latents_{base_filename}_{seed}.pt"
        torch.save(final_latents, final_latents_path)
        logging.info(f"Final latents saved to: {final_latents_path}")
        
        pixel_tensor = vae_manager_singleton.decode(
            final_latents, decode_timestep=float(self.config.get("decode_timestep", 0.05))
        )
        video_path = self._save_and_log_video(pixel_tensor, f"{base_filename}_{seed}")
        return str(video_path), str(final_latents_path), seed

    @log_function_io
    def prepare_condition_items(self, items_list: List, height: int, width: int, num_frames: int) -> List[ConditioningItem]:
        """[UNIFIED] Prepares ConditioningItems from a mixed list of file paths and tensors."""
        if not items_list: return []
        height_padded, width_padded = self._align(height), self._align(width)
        padding_values = calculate_padding(height, width, height_padded, width_padded)
        
        conditioning_items = []
        for media_item, frame, weight in items_list:
            if isinstance(media_item, str):
                tensor = load_image_to_tensor_with_resize_and_crop(media_item, height, width)
                tensor = torch.nn.functional.pad(tensor, padding_values)
                tensor = tensor.to(self.main_device, dtype=self.runtime_autocast_dtype)
            elif isinstance(media_item, torch.Tensor):
                tensor = media_item.to(self.main_device, dtype=self.runtime_autocast_dtype)
            else:
                logging.warning(f"Unknown conditioning media type: {type(media_item)}. Skipping.")
                continue
            
            safe_frame = max(0, min(int(frame), num_frames - 1))
            conditioning_items.append(ConditioningItem(tensor, safe_frame, float(weight)))
        return conditioning_items

    def _apply_ui_overrides(self, config_dict: Dict, overrides: Dict):
        """Applies advanced settings from the UI to a config dictionary."""
        # Override step counts
        for key in ["num_inference_steps", "skip_initial_inference_steps", "skip_final_inference_steps"]:
            ui_value = overrides.get(key)
            if ui_value and ui_value > 0:
                config_dict[key] = ui_value
                logging.info(f"Override: '{key}' set to {ui_value} by UI.")
        
        # Override guidance settings
        preset = overrides.get("guidance_preset", "Padrão (Recomendado)")
        guidance_overrides = {}
        if preset == "Agressivo":
            guidance_overrides = {"guidance_scale": [1, 2, 8, 12, 8, 2, 1], "stg_scale": [0, 0, 5, 6, 5, 3, 2]}
        elif preset == "Suave":
            guidance_overrides = {"guidance_scale": [1, 1, 4, 5, 4, 1, 1], "stg_scale": [0, 0, 2, 2, 2, 1, 0]}
        elif preset == "Customizado":
            try:
                guidance_overrides["guidance_scale"] = json.loads(overrides["guidance_scale_list"])
                guidance_overrides["stg_scale"] = json.loads(overrides["stg_scale_list"])
            except Exception as e:
                logging.warning(f"Failed to parse custom guidance values: {e}. Using defaults.")
        
        if guidance_overrides:
            config_dict.update(guidance_overrides)
            logging.info(f"Applying '{preset}' guidance preset overrides.")

    def _save_and_log_video(self, pixel_tensor: torch.Tensor, base_filename: str) -> Path:
        with tempfile.TemporaryDirectory() as temp_dir:
            temp_path = os.path.join(temp_dir, f"{base_filename}.mp4")
            video_encode_tool_singleton.save_video_from_tensor(pixel_tensor, temp_path, fps=DEFAULT_FPS)
            final_path = RESULTS_DIR / f"{base_filename}.mp4"
            shutil.move(temp_path, final_path)
            logging.info(f"Video saved successfully to: {final_path}")
            return final_path
    
    def _apply_precision_policy(self):
        precision = str(self.config.get("precision", "bfloat16")).lower()
        if precision in ["float8_e4m3fn", "bfloat16"]: self.runtime_autocast_dtype = torch.bfloat16
        elif precision == "mixed_precision": self.runtime_autocast_dtype = torch.float16
        else: self.runtime_autocast_dtype = torch.float32
        logging.info(f"Runtime precision policy set for autocast: {self.runtime_autocast_dtype}")

    def _align(self, dim: int, alignment: int = FRAMES_ALIGNMENT) -> int:
        return ((dim - 1) // alignment + 1) * alignment
    
    def _calculate_aligned_frames(self, duration_s: float, min_frames: int = 1) -> int:
        num_frames = int(round(duration_s * DEFAULT_FPS))
        aligned_frames = self._align(num_frames)
        return max(aligned_frames, min_frames)

    def _get_random_seed(self) -> int:
        """Always generates and returns a new random seed."""
        return random.randint(0, 2**32 - 1)

# ==============================================================================
# --- INSTANCIAÇÃO SINGLETON ---
# ==============================================================================
try:
    video_generation_service = VideoService()
    logging.info("Global VideoService orchestrator instance created successfully.")
except Exception as e:
    logging.critical(f"Failed to initialize VideoService: {e}", exc_info=True)
    sys.exit(1)