Spaces:
Paused
Paused
File size: 26,430 Bytes
1c0198d d7c623e 1c0198d fd4abdb 1c0198d a01cea0 1c0198d d7c623e 1c0198d d7c623e 1497820 1c0198d 98f7246 1c0198d ab2fc5d 1c0198d f752c5c 1c0198d ab2fc5d 2701e1f ab2fc5d 1c0198d ab2fc5d 1c0198d ab2fc5d 1c0198d ab2fc5d 1c0198d 2701e1f 1c0198d 1497820 1c0198d 1497820 1c0198d 1497820 1c0198d 1497820 1c0198d 98f7246 1c0198d d7c623e f736eae 1c0198d a01cea0 1c0198d a01cea0 1c0198d a01cea0 1c0198d a01cea0 1c0198d a01cea0 1c0198d adeb128 1c0198d 1b84db0 1c0198d 1b84db0 1c0198d f0b8c63 1c0198d ee39a80 1c0198d f9a7e20 ee39a80 1c0198d ee39a80 1c0198d f0b8c63 8e208cb 1b84db0 f9a7e20 1b84db0 f0b8c63 1c0198d f0f0810 1c0198d f0f0810 1c0198d f0f0810 1c0198d f0f0810 1c0198d f0f0810 1c0198d f0f0810 1c0198d f0f0810 1c0198d f0f0810 1c0198d f0f0810 1c0198d f0f0810 1c0198d f0f0810 1c0198d f0f0810 1c0198d f0f0810 1c0198d f0f0810 1c0198d cb6fb4c 1c0198d cb6fb4c 1c0198d f0f0810 1c0198d f0f0810 1c0198d f0f0810 1c0198d f0f0810 1c0198d f0f0810 cb6fb4c 1497820 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 |
# ltx_server_clean_refactor.py — VideoService (Modular Version with Simple Overlap Chunking)
# ==============================================================================
# 0. CONFIGURAÇÃO DE AMBIENTE E IMPORTAÇÕES
# ==============================================================================
import os
import sys
import gc
import yaml
import time
import json
import random
import shutil
import warnings
import tempfile
import traceback
import subprocess
from pathlib import Path
from typing import List, Dict, Optional, Tuple, Union
import cv2
# --- Configurações de Logging e Avisos ---
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=FutureWarning)
from huggingface_hub import logging as hf_logging
hf_logging.set_verbosity_error()
# --- Importações de Bibliotecas de ML/Processamento ---
import torch
import torch.nn.functional as F
import numpy as np
from PIL import Image
from einops import rearrange
from huggingface_hub import hf_hub_download
from safetensors import safe_open
from managers.vae_manager import vae_manager_singleton
from tools.video_encode_tool import video_encode_tool_singleton
from api.aduc_ltx_latent_patch import LTXLatentConditioningPatch, PatchedConditioningItem
# --- Constantes Globais ---
LTXV_DEBUG = True # Mude para False para desativar logs de debug
LTXV_FRAME_LOG_EVERY = 8
DEPS_DIR = Path("/data")
LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video"
RESULTS_DIR = Path("/app/output")
DEFAULT_FPS = 24.0
# ==============================================================================
# 1. SETUP E FUNÇÕES AUXILIARES DE AMBIENTE
# ==============================================================================
def _run_setup_script():
"""Executa o script setup.py se o repositório LTX-Video não existir."""
setup_script_path = "setup.py"
if not os.path.exists(setup_script_path):
print("[DEBUG] 'setup.py' não encontrado. Pulando clonagem de dependências.")
return
print(f"[DEBUG] Repositório não encontrado em {LTX_VIDEO_REPO_DIR}. Executando setup.py...")
try:
subprocess.run([sys.executable, setup_script_path], check=True, capture_output=True, text=True)
print("[DEBUG] Script 'setup.py' concluído com sucesso.")
except subprocess.CalledProcessError as e:
print(f"[ERROR] Falha ao executar 'setup.py' (código {e.returncode}).\nOutput:\n{e.stdout}\n{e.stderr}")
sys.exit(1)
def add_deps_to_path(repo_path: Path):
"""Adiciona o diretório do repositório ao sys.path para importações locais."""
resolved_path = str(repo_path.resolve())
if resolved_path not in sys.path:
sys.path.insert(0, resolved_path)
if LTXV_DEBUG:
print(f"[DEBUG] Adicionado ao sys.path: {resolved_path}")
# --- Execução da configuração inicial ---
if not LTX_VIDEO_REPO_DIR.exists():
_run_setup_script()
add_deps_to_path(LTX_VIDEO_REPO_DIR)
# --- Importações Dependentes do Path Adicionado ---
from ltx_video.models.autoencoders.vae_encode import un_normalize_latents, normalize_latents
from ltx_video.pipelines.pipeline_ltx_video import adain_filter_latent
from ltx_video.models.autoencoders.latent_upsampler import LatentUpsampler
from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXVideoPipeline
from transformers import T5EncoderModel, T5Tokenizer, AutoModelForCausalLM, AutoProcessor, AutoTokenizer
from ltx_video.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
from ltx_video.models.transformers.symmetric_patchifier import SymmetricPatchifier
from ltx_video.models.transformers.transformer3d import Transformer3DModel
from ltx_video.schedulers.rf import RectifiedFlowScheduler
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
import ltx_video.pipelines.crf_compressor as crf_compressor
def create_latent_upsampler(latent_upsampler_model_path: str, device: str):
latent_upsampler = LatentUpsampler.from_pretrained(latent_upsampler_model_path)
latent_upsampler.to(device)
latent_upsampler.eval()
return latent_upsampler
def create_ltx_video_pipeline(
ckpt_path: str,
precision: str,
text_encoder_model_name_or_path: str,
sampler: Optional[str] = None,
device: Optional[str] = None,
enhance_prompt: bool = False,
prompt_enhancer_image_caption_model_name_or_path: Optional[str] = None,
prompt_enhancer_llm_model_name_or_path: Optional[str] = None,
) -> LTXVideoPipeline:
ckpt_path = Path(ckpt_path)
assert os.path.exists(
ckpt_path
), f"Ckpt path provided (--ckpt_path) {ckpt_path} does not exist"
with safe_open(ckpt_path, framework="pt") as f:
metadata = f.metadata()
config_str = metadata.get("config")
configs = json.loads(config_str)
allowed_inference_steps = configs.get("allowed_inference_steps", None)
vae = CausalVideoAutoencoder.from_pretrained(ckpt_path)
transformer = Transformer3DModel.from_pretrained(ckpt_path)
# Use constructor if sampler is specified, otherwise use from_pretrained
if sampler == "from_checkpoint" or not sampler:
scheduler = RectifiedFlowScheduler.from_pretrained(ckpt_path)
else:
scheduler = RectifiedFlowScheduler(
sampler=("Uniform" if sampler.lower() == "uniform" else "LinearQuadratic")
)
text_encoder = T5EncoderModel.from_pretrained(
text_encoder_model_name_or_path, subfolder="text_encoder"
)
patchifier = SymmetricPatchifier(patch_size=1)
tokenizer = T5Tokenizer.from_pretrained(
text_encoder_model_name_or_path, subfolder="tokenizer"
)
transformer = transformer.to(device)
vae = vae.to(device)
text_encoder = text_encoder.to(device)
if enhance_prompt:
prompt_enhancer_image_caption_model = AutoModelForCausalLM.from_pretrained(
prompt_enhancer_image_caption_model_name_or_path, trust_remote_code=True
)
prompt_enhancer_image_caption_processor = AutoProcessor.from_pretrained(
prompt_enhancer_image_caption_model_name_or_path, trust_remote_code=True
)
prompt_enhancer_llm_model = AutoModelForCausalLM.from_pretrained(
prompt_enhancer_llm_model_name_or_path,
torch_dtype="bfloat16",
)
prompt_enhancer_llm_tokenizer = AutoTokenizer.from_pretrained(
prompt_enhancer_llm_model_name_or_path,
)
else:
prompt_enhancer_image_caption_model = None
prompt_enhancer_image_caption_processor = None
prompt_enhancer_llm_model = None
prompt_enhancer_llm_tokenizer = None
vae = vae.to(torch.bfloat16)
if precision == "bfloat16" and transformer.dtype != torch.bfloat16:
transformer = transformer.to(torch.bfloat16)
text_encoder = text_encoder.to(torch.bfloat16)
# Use submodels for the pipeline
submodel_dict = {
"transformer": transformer,
"patchifier": patchifier,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"scheduler": scheduler,
"vae": vae,
"prompt_enhancer_image_caption_model": prompt_enhancer_image_caption_model,
"prompt_enhancer_image_caption_processor": prompt_enhancer_image_caption_processor,
"prompt_enhancer_llm_model": prompt_enhancer_llm_model,
"prompt_enhancer_llm_tokenizer": prompt_enhancer_llm_tokenizer,
"allowed_inference_steps": allowed_inference_steps,
}
pipeline = LTXVideoPipeline(**submodel_dict)
LTXLatentConditioningPatch.apply()
pipeline = pipeline.to(device)
return pipeline
# ==============================================================================
# 2. FUNÇÕES AUXILIARES DE PROCESSAMENTO
# ==============================================================================
def calculate_padding(orig_h: int, orig_w: int, target_h: int, target_w: int) -> Tuple[int, int, int, int]:
"""Calcula o preenchimento para centralizar uma imagem em uma nova dimensão."""
pad_h = target_h - orig_h
pad_w = target_w - orig_w
pad_top = pad_h // 2
pad_bottom = pad_h - pad_top
pad_left = pad_w // 2
pad_right = pad_w - pad_left
return (pad_left, pad_right, pad_top, pad_bottom)
def log_tensor_info(tensor: torch.Tensor, name: str = "Tensor"):
"""Exibe informações detalhadas sobre um tensor para depuração."""
if not isinstance(tensor, torch.Tensor):
print(f"\n[INFO] '{name}' não é um tensor.")
return
print(f"\n--- Tensor Info: {name} ---")
print(f" - Shape: {tuple(tensor.shape)}")
print(f" - Dtype: {tensor.dtype}")
print(f" - Device: {tensor.device}")
if tensor.numel() > 0:
try:
print(f" - Stats: Min={tensor.min().item():.4f}, Max={tensor.max().item():.4f}, Mean={tensor.mean().item():.4f}")
except RuntimeError:
print(" - Stats: Não foi possível calcular (ex: tensores bool).")
print("-" * 30)
# ==============================================================================
# 3. CLASSE PRINCIPAL DO SERVIÇO DE VÍDEO
# ==============================================================================
class VideoService:
"""
Serviço encapsulado para gerar vídeos usando a pipeline LTX-Video.
Gerencia o carregamento de modelos, pré-processamento, geração em múltiplos
passos (baixa resolução, upscale com denoise) e pós-processamento.
"""
def __init__(self):
"""Inicializa o serviço, carregando configurações e modelos."""
t0 = time.perf_counter()
print("[INFO] Inicializando VideoService...")
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.config = self._load_config("ltxv-13b-0.9.8-distilled-fp8.yaml")
self.pipeline, self.latent_upsampler = self._load_models_from_hub()
self._move_models_to_device()
self.runtime_autocast_dtype = self._get_precision_dtype()
vae_manager_singleton.attach_pipeline(
self.pipeline,
device=self.device,
autocast_dtype=self.runtime_autocast_dtype
)
self._tmp_dirs = set()
RESULTS_DIR.mkdir(exist_ok=True)
print(f"[INFO] VideoService pronto. Tempo de inicialização: {time.perf_counter()-t0:.2f}s")
# --------------------------------------------------------------------------
# --- Métodos Públicos (API do Serviço) ---
# --------------------------------------------------------------------------
def _load_image_to_tensor_with_resize_and_crop(
self,
image_input: Union[str, Image.Image],
target_height: int = 512,
target_width: int = 768,
just_crop: bool = False,
) -> torch.Tensor:
"""Load and process an image into a tensor.
Args:
image_input: Either a file path (str) or a PIL Image object
target_height: Desired height of output tensor
target_width: Desired width of output tensor
just_crop: If True, only crop the image to the target size without resizing
"""
if isinstance(image_input, str):
image = Image.open(image_input).convert("RGB")
elif isinstance(image_input, Image.Image):
image = image_input
else:
raise ValueError("image_input must be either a file path or a PIL Image object")
input_width, input_height = image.size
aspect_ratio_target = target_width / target_height
aspect_ratio_frame = input_width / input_height
if aspect_ratio_frame > aspect_ratio_target:
new_width = int(input_height * aspect_ratio_target)
new_height = input_height
x_start = (input_width - new_width) // 2
y_start = 0
else:
new_width = input_width
new_height = int(input_width / aspect_ratio_target)
x_start = 0
y_start = (input_height - new_height) // 2
image = image.crop((x_start, y_start, x_start + new_width, y_start + new_height))
if not just_crop:
image = image.resize((target_width, target_height))
image = np.array(image)
image = cv2.GaussianBlur(image, (3, 3), 0)
frame_tensor = torch.from_numpy(image).float()
frame_tensor = crf_compressor.compress(frame_tensor / 255.0) * 255.0
frame_tensor = frame_tensor.permute(2, 0, 1)
frame_tensor = (frame_tensor / 127.5) - 1.0
# Create 5D tensor: (batch_size=1, channels=3, num_frames=1, height, width)
return frame_tensor.unsqueeze(0).unsqueeze(2)
# ADICIONE A FUNÇÃO ABAIXO
@torch.no_grad()
def _image_to_latents(self, image_input: Union[str, Image.Image], height: int, width: int) -> torch.Tensor:
"""
Converte uma imagem (caminho ou PIL) em um tensor de latentes 5D.
Retorna: Tensor na forma [1, C_lat, 1, H_lat, W_lat]
"""
print(f"[DEBUG] Codificando imagem para latente ({height}x{width})...")
# 1. Carrega a imagem e a transforma em um tensor de pixel 5D
pixel_tensor = self._load_image_to_tensor_with_resize_and_crop(
image_input, target_height=height, target_width=width
)
pixel_tensor_gpu = pixel_tensor.to(self.device, dtype=self.pipeline.vae.dtype)
# 2. Usa a VAE para codificar o tensor de pixel em um tensor de latentes
with torch.autocast(device_type=self.device.split(':')[0], dtype=self.runtime_autocast_dtype, enabled=(self.device == 'cuda')):
# O vae_encode da pipeline já lida com tensores 5D
latents = self.pipeline.vae.encode(pixel_tensor_gpu).latent_dist.sample()
# 3. Aplica o fator de escala (importante para consistência)
if hasattr(self.pipeline.vae.config, "scaling_factor"):
latents = latents * self.pipeline.vae.config.scaling_factor
print(f"[DEBUG] Imagem codificada para latente com shape: {latents.shape}")
return latents
def _prepare_condition_items(self, items_list: List[Tuple], height: int, width: int) -> List[PatchedConditioningItem]:
"""
Prepara os itens de condicionamento.
Recebe uma lista [Imagem, frame, peso], converte a Imagem para LATENTE
e cria uma lista de PatchedConditioningItem com o tensor em `latents`.
"""
if not items_list:
return []
conditioning_items = []
for media_input, frame_idx, weight in items_list:
# 1. USA A NOVA FUNÇÃO PARA OBTER O TENSOR DE LATENTES DIRETAMENTE
latent_tensor = self._image_to_latents(media_input, height, width)
safe_frame_idx = int(frame_idx)
# 2. CRIA O PatchedConditioningItem COM O CAMPO `latents` PREENCHIDO
item = PatchedConditioningItem(
media_frame_number=safe_frame_idx,
conditioning_strength=float(weight),
media_item=None, # Importante: media_item é None
latents=latent_tensor # O latente pré-calculado vai aqui!
)
conditioning_items.append(item)
print(f"[INFO] Preparados {len(conditioning_items)} itens de condicionamento com latentes pré-codificados.")
return conditioning_items
def generate_low_resolution(
self,
prompt: str,
negative_prompt: str,
height: int,
width: int,
duration_secs: float,
guidance_scale: float,
seed: Optional[int] = None,
conditioning_items: Optional[List[PatchedConditioningItem]] = None
) -> Tuple[str, str, int]:
"""
ETAPA 1: Gera um vídeo e latentes em resolução base a partir de um prompt e
condicionamentos opcionais.
"""
print("[INFO] Iniciando ETAPA 1: Geração de Baixa Resolução...")
# --- Configuração de Seed e Diretórios ---
used_seed = random.randint(0, 2**32 - 1) if seed is None else int(seed)
#seed_everything(used_seed)
print(f" - Usando Seed: {used_seed}")
temp_dir = tempfile.mkdtemp(prefix="ltxv_low_")
self._register_tmp_dir(temp_dir)
results_dir = "/app/output"
os.makedirs(results_dir, exist_ok=True)
# --- Cálculo de Dimensões e Frames ---
actual_num_frames = int(round(duration_secs * DEFAULT_FPS))
downscaled_height = height
downscaled_width = width
#self._calculate_downscaled_dims(height, width)
print(f" - Frames: {actual_num_frames}, Duração: {duration_secs}s")
print(f" - Dimensões de Saída: {downscaled_height}x{downscaled_width}")
# --- Execução da Pipeline ---
with torch.autocast(device_type=self.device.split(':')[0], dtype=self.runtime_autocast_dtype, enabled=(self.device == 'cuda')):
first_pass_kwargs = {
"prompt": prompt,
"negative_prompt": negative_prompt,
"height": downscaled_height,
"width": downscaled_width,
"num_frames": (actual_num_frames//8)+1,
"frame_rate": int(DEFAULT_FPS),
"generator": torch.Generator(device=self.device).manual_seed(used_seed),
"output_type": "latent",
"vae_per_channel_normalize": True,
"is_video": True,
"conditioning_items": conditioning_items,
"guidance_scale": float(guidance_scale),
**(self.config.get("first_pass", {}))
}
print(" - Enviando para a pipeline LTX...")
latents = self.pipeline(**first_pass_kwargs).images
print(f" - Latentes gerados com shape: {latents.shape}")
# Decodifica os latentes para pixels para criar o vídeo de preview
pixel_tensor = vae_manager_singleton.decode(latents, decode_timestep=float(self.config.get("decode_timestep", 0.05)))
tensor_path = self._save_latents_to_disk(latents, "latents_low_res", used_seed)
final_video_path = self._save_video_from_tensor(pixel_tensor, f"final_video_{seed}", seed, temp_dir, fps=DEFAULT_FPS)
return final_video_path
# --- Limpeza ---
self._finalize()
print("[SUCCESS] ETAPA 1 Concluída.")
return final_video_path, tensor_path, used_seed
# --------------------------------------------------------------------------
# --- Métodos Internos e Auxiliares ---
# --------------------------------------------------------------------------
def _finalize(self):
"""Limpa a memória da GPU e os diretórios temporários."""
if LTXV_DEBUG:
print("[DEBUG] Finalize: iniciando limpeza...")
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
# Limpa todos os diretórios temporários registrados
for d in list(self._tmp_dirs):
shutil.rmtree(d, ignore_errors=True)
self._tmp_dirs.remove(d)
if LTXV_DEBUG:
print(f"[DEBUG] Diretório temporário removido: {d}")
def _save_latents_to_disk(self, latents_tensor: torch.Tensor, base_filename: str, seed: int) -> str:
"""Salva um tensor de latentes em um arquivo .pt."""
latents_cpu = latents_tensor.detach().to("cpu")
tensor_path = RESULTS_DIR / f"{base_filename}_{seed}.pt"
torch.save(latents_cpu, tensor_path)
if LTXV_DEBUG:
print(f"[DEBUG] Latentes salvos em: {tensor_path}")
return str(tensor_path)
def _save_video_from_tensor(self, pixel_tensor: torch.Tensor, base_filename: str, seed: int, temp_dir: str, fps: int = int(DEFAULT_FPS)) -> str:
"""Salva um tensor de pixels como um arquivo de vídeo MP4."""
temp_path = os.path.join(temp_dir, f"{base_filename}_{seed}.mp4")
video_encode_tool_singleton.save_video_from_tensor(pixel_tensor, temp_path, fps=DEFAULT_FPS)
final_path = RESULTS_DIR / f"{base_filename}_{seed}.mp4"
shutil.move(temp_path, final_path)
print(f"[INFO] Vídeo final salvo em: {final_path}")
return str(final_path)
def _load_config(self, config_filename: str) -> Dict:
"""Carrega o arquivo de configuração YAML."""
config_path = LTX_VIDEO_REPO_DIR / "configs" / config_filename
print(f"[INFO] Carregando configuração de: {config_path}")
with open(config_path, "r") as file:
return yaml.safe_load(file)
def _load_models_from_hub(self):
"""Baixa e cria as instâncias da pipeline e do upsampler."""
t0 = time.perf_counter()
LTX_REPO = "Lightricks/LTX-Video"
print("[INFO] Baixando checkpoint principal...")
self.config["checkpoint_path"] = hf_hub_download(
repo_id=LTX_REPO, filename=self.config["checkpoint_path"],
token=os.getenv("HF_TOKEN")
)
print(f"[INFO] Checkpoint principal em: {self.config['checkpoint_path']}")
print("[INFO] Construindo pipeline...")
pipeline = create_ltx_video_pipeline(
ckpt_path=self.config["checkpoint_path"],
precision=self.config["precision"],
text_encoder_model_name_or_path=self.config["text_encoder_model_name_or_path"],
sampler=self.config["sampler"],
device="cpu", # Carrega em CPU primeiro
enhance_prompt=False
)
print("[INFO] Pipeline construída.")
latent_upsampler = None
if self.config.get("spatial_upscaler_model_path"):
print("[INFO] Baixando upscaler espacial...")
self.config["spatial_upscaler_model_path"] = hf_hub_download(
repo_id=LTX_REPO, filename=self.config["spatial_upscaler_model_path"],
token=os.getenv("HF_TOKEN")
)
print(f"[INFO] Upscaler em: {self.config['spatial_upscaler_model_path']}")
print("[INFO] Construindo latent_upsampler...")
latent_upsampler = create_latent_upsampler(self.config["spatial_upscaler_model_path"], device="cpu")
print("[INFO] Latent upsampler construído.")
print(f"[INFO] Carregamento de modelos concluído em {time.perf_counter()-t0:.2f}s")
return pipeline, latent_upsampler
def _move_models_to_device(self):
"""Move os modelos carregados para o dispositivo de computação (GPU/CPU)."""
print(f"[INFO] Movendo modelos para o dispositivo: {self.device}")
self.pipeline.to(self.device)
if self.latent_upsampler:
self.latent_upsampler.to(self.device)
def _get_precision_dtype(self) -> torch.dtype:
"""Determina o dtype para autocast com base na configuração de precisão."""
prec = str(self.config.get("precision", "")).lower()
if prec in ["float8_e4m3fn", "bfloat16"]:
return torch.bfloat16
elif prec == "mixed_precision":
return torch.float16
return torch.float32
@torch.no_grad()
def _upsample_and_filter_latents(self, latents: torch.Tensor) -> torch.Tensor:
"""Aplica o upsample espacial e o filtro AdaIN aos latentes."""
if not self.latent_upsampler:
raise ValueError("Latent Upsampler não está carregado para a operação de upscale.")
latents_unnormalized = un_normalize_latents(latents, self.pipeline.vae, vae_per_channel_normalize=True)
upsampled_latents_unnormalized = self.latent_upsampler(latents_unnormalized)
upsampled_latents_normalized = normalize_latents(upsampled_latents_unnormalized, self.pipeline.vae, vae_per_channel_normalize=True)
# Filtro AdaIN para manter consistência de cor/estilo com o vídeo de baixa resolução
return adain_filter_latent(latents=upsampled_latents_normalized, reference_latents=latents)
def _prepare_conditioning_tensor_from_path(self, filepath: str, height: int, width: int, padding: Tuple) -> torch.Tensor:
"""Carrega uma imagem, redimensiona, aplica padding e move para o dispositivo."""
tensor = self._load_image_to_tensor_with_resize_and_crop(filepath, height, width)
tensor = F.pad(tensor, padding)
return tensor.to(self.device, dtype=self.runtime_autocast_dtype)
def _calculate_downscaled_dims(self, height: int, width: int) -> Tuple[int, int]:
"""Calcula as dimensões para o primeiro passo (baixa resolução)."""
height_padded = ((height - 1) // 8 + 1) * 8
width_padded = ((width - 1) // 8 + 1) * 8
downscale_factor = self.config.get("downscale_factor", 0.6666666)
vae_scale_factor = self.pipeline.vae_scale_factor
target_w = int(width_padded * downscale_factor)
downscaled_width = target_w - (target_w % vae_scale_factor)
target_h = int(height_padded * downscale_factor)
downscaled_height = target_h - (target_h % vae_scale_factor)
return downscaled_height, downscaled_width
def _seed_everething(self, seed: int):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
if torch.backends.mps.is_available():
torch.mps.manual_seed(seed)
def _register_tmp_dir(self, dir_path: str):
"""Registra um diretório temporário para limpeza posterior."""
if dir_path and os.path.isdir(dir_path):
self._tmp_dirs.add(dir_path)
if LTXV_DEBUG:
print(f"[DEBUG] Diretório temporário registrado: {dir_path}")
# ==============================================================================
# 4. INSTANCIAÇÃO E PONTO DE ENTRADA (Exemplo)
# ==============================================================================
print("Criando instância do VideoService. O carregamento do modelo começará agora...")
video_generation_service = VideoService()
print("Instância do VideoService pronta para uso.") |