File size: 40,206 Bytes
cae4d0f 5e09303 d7f622f 5e09303 cae4d0f 5e09303 5b04d4e cae4d0f c8225f5 97a28b9 c8225f5 a0b3b71 5e09303 c8225f5 5e09303 6b09246 5e09303 6b09246 5e09303 6b09246 a0b3b71 d7f622f a0b3b71 c47538f a0b3b71 c47538f a0b3b71 c47538f a0b3b71 7b2afd4 396874f 7b2afd4 95ac6d4 97a28b9 5e09303 6b09246 5e09303 6b09246 5e09303 6b09246 a43032b 5e09303 a43032b 5e09303 a43032b 5e09303 a43032b 5e09303 a43032b 5e09303 a43032b 5e09303 a43032b 5e09303 a43032b 5e09303 a43032b 9b06c44 5e09303 a43032b 5e09303 a43032b 5e09303 a43032b 5e09303 a43032b 5e09303 a43032b d0105c8 5e09303 d0105c8 97a28b9 5e09303 97a28b9 5e09303 97a28b9 5e09303 97a28b9 5e09303 07ad260 5e09303 a0f2788 5e09303 97a28b9 d0105c8 9835969 af23b14 97a28b9 9835969 ab78810 97a28b9 a43032b 5e09303 a43032b 7b2afd4 a43032b 19c0895 a43032b b0db80c 5e09303 a43032b 97a28b9 5e09303 97a28b9 cae4d0f 5e09303 13fe545 56e849d 5e09303 56e849d 5e09303 13fe545 5e09303 ea6af72 5e09303 2794d9a ea6af72 13fe545 ea6af72 89d23fd 5e09303 ea6af72 6b09246 5e09303 ea6af72 5888550 ea6af72 5e09303 2794d9a 5888550 5e09303 cb9f237 13fe545 5e09303 6b09246 95ac6d4 5e09303 6b09246 5e09303 6b09246 5e09303 2794d9a 5e09303 95ac6d4 5e09303 5888550 13fe545 89d23fd 5e09303 5888550 6b09246 5888550 cae4d0f 5e09303 cae4d0f 5e09303 cae4d0f 2794d9a 5e09303 cae4d0f 5e09303 a0702aa 5e09303 a0702aa 5e09303 cae4d0f 9835969 5e09303 ea6af72 5e09303 dbd3b18 5e09303 cae4d0f 5e09303 5d82125 5e09303 7b2afd4 5e09303 ad05cd8 5e09303 ad05cd8 5e09303 ad05cd8 5e09303 ad05cd8 5e09303 ad05cd8 5e09303 ad05cd8 a0702aa ad05cd8 a0702aa ad05cd8 a0702aa ad05cd8 a0702aa ad05cd8 a0702aa ad05cd8 a0702aa ad05cd8 6b09246 ad05cd8 7b2afd4 ad05cd8 5e09303 ad05cd8 5e09303 a0b3b71 c47538f a0b3b71 c47538f 5e09303 ad05cd8 5e09303 ad05cd8 5e09303 95ac6d4 5e09303 ad05cd8 5e09303 95ac6d4 5e09303 c47538f ad05cd8 5e09303 ad05cd8 5e09303 ad05cd8 5e09303 95ac6d4 5e09303 ad05cd8 5e09303 95ac6d4 5e09303 ad05cd8 5e09303 6b09246 5e09303 490893b 5e09303 cae4d0f 5e09303 ad05cd8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 |
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from functools import lru_cache
import logging
import os
from src.about import CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, EVALUATION_QUEUE_TEXT, INTRODUCTION_TEXT, \
LLM_BENCHMARKS_TEXT, TITLE
from src.tasks import TASK_DESCRIPTIONS, MEASURE_DESCRIPTION
from src.display.css_html_js import custom_css
from src.display.utils import BENCHMARK_COLS, COLS, EVAL_COLS, EVAL_TYPES, AutoEvalColumn, ModelType, fields, \
WeightType, Precision
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
import matplotlib.pyplot as plt
import re
import plotly.express as px
import plotly.graph_objects as go
import numpy as np
import requests
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# EVALITA results
BASELINES = {
"TE": 71.00, "SA": 66.38, "HS": 80.88, "AT": 82.40, "WIC": 85.00,
"LS": 38.82, "SU": 38.91, "NER": 88.00, "REL": 62.99
}
# GPT-4o results
REFERENCES = {
"NER": 79.11, "REL": 63.32, "LS": 59.25, "SU": 33.04
}
TASK_METADATA_MULTIPLECHOICE = {
"TE": {"icon": "π", "name": "Textual Entailment", "tooltip": ""},
"SA": {"icon": "π", "name": "Sentiment Analysis", "tooltip": ""},
"HS": {"icon": "β οΈ", "name": "Hate Speech", "tooltip": ""},
"AT": {"icon": "π₯", "name": "Admission Test", "tooltip": ""},
"WIC": {"icon": "π€", "name": "Word in Context", "tooltip": ""},
"FAQ": {"icon": "β", "name": "Frequently Asked Questions", "tooltip": ""}
}
TASK_METADATA_GENERATIVE = {
"LS": {"icon": "π", "name": "Lexical Substitution", "tooltip": ""},
"SU": {"icon": "π", "name": "Summarization", "tooltip": ""},
"NER": {"icon": "π·οΈ", "name": "Named Entity Recognition", "tooltip": ""},
"REL": {"icon": "π", "name": "Relation Extraction", "tooltip": ""},
}
# Function to send a Slack notification for a new model submission for evaluation
def send_slack_notification(model_name, user_name, user_affiliation):
# Insert your Slack webhook URL here
webhook_url = os.getenv("WEBHOOK_URL")
# Create the messag to be sent to Slack
message = {
"text": f"New model submission for EVALITA-LLM leaderboard:\n\n"
f"**Model Name**: {model_name}\n"
f"**User**: {user_name}\n"
f"**Affiliation**: {user_affiliation}\n"
f"Check out the model on HuggingFace: https://huggingface.co/{model_name}"
}
# Send the message to Slack
response = requests.post(webhook_url, json=message)
# Check if the request was successful and return the appropriate message
if response.status_code == 200:
return "β
**Notification sent successfully!**"
else:
return f"β **Failed to send notification**: {response.text}"
# Funcion to validate the model submission and send the request for processing
def validate_and_submit_request(model_name, user_email, user_affiliation):
# Check if model name is provided and not empt
if not model_name or not model_name.strip():
return "β **Error:** Model name is required."
# Check if user email is provided and not empty
if not user_email or not user_email.strip():
return "β **Error:** Email address is required."
# Validate email format using regex
email_regex = r'^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$'
if not re.match(email_regex, user_email.strip()):
return "β **Error:** Invalid email format. Please enter a valid email address."
# Check if user affiliation is provided and not empty
if not user_affiliation or not user_affiliation.strip():
return "β **Error:** Affiliation is required."
# Check if model name follows the correct format (organization/model-name)
if "/" not in model_name:
return "β **Error:** Model name must be in format 'organization/model-name' (e.g., 'microsoft/DialoGPT-medium')."
# Check if the model name contains only valid characters
if not re.match(r'^[a-zA-Z0-9._/-]+$', model_name):
return "β **Error:** Model name contains invalid characters."
slack_response = send_slack_notification(model_name.strip(), user_email.strip(), user_affiliation.strip())
# Return the Slack response (success or failure message)
return slack_response
def map_prompt_ids_for_generation(dataframe):
"""
Map original prompt IDs (1 or 2) to their corresponding generative prompt IDs.
- For task 'SU': 1 -> 7, 2 -> 8
- For tasks 'NER', 'REL', 'LS': 1 -> 9, 2 -> 10
"""
# Mapping for SU task
task = "SU"
best_prompt_col = f"{task} Best Prompt Id"
if best_prompt_col in dataframe.columns:
dataframe[best_prompt_col] = dataframe[best_prompt_col].apply(
lambda x: 7 if x == 1 else 8
)
# Mapping for other tasks
for task in ["NER", "REL", "LS"]:
best_prompt_col = f"{task} Best Prompt Id"
if best_prompt_col in dataframe.columns:
dataframe[best_prompt_col] = dataframe[best_prompt_col].apply(
lambda x: 9 if x == 1 else 10
)
return dataframe
def create_best_model_comparison_table(dataframe):
"""
Tabella interattiva con dettagli dei modelli migliori per ogni task.
"""
tasks = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]
table_data = {
'Task': [], 'Model': [], 'Perf.': [], 'FS': [], 'Params (B)': []
}
for task in tasks:
if task in dataframe.columns:
max_idx = dataframe[task].idxmax()
model_raw = dataframe.loc[max_idx, 'Model']
if isinstance(model_raw, str) and '<' in model_raw:
match = re.search(r'>([^<]+)<', model_raw)
model_name = match.group(1) if match else model_raw
else:
model_name = str(model_raw)
table_data['Task'].append(task)
table_data['Model'].append(model_name)
table_data['Perf.'].append(f"{dataframe.loc[max_idx, task]:.2f}%")
table_data['FS'].append("5-Shot" if dataframe.loc[max_idx, 'IS_FS'] else "0-Shot")
table_data['Params (B)'].append(f"{dataframe.loc[max_idx, '#Params (B)']:.1f}")
fig = go.Figure(data=[go.Table(
columnwidth=[80, 200, 80, 80, 100], # larghezze proporzionali
header=dict(
values=[f'<b>{col}</b>' for col in table_data.keys()],
fill_color='#005f87',
font=dict(color='white', size=12, family='Arial'),
align='center',
height=35
),
cells=dict(
values=list(table_data.values()),
fill_color=[['#f0f0f0' if i % 2 == 0 else 'white' for i in range(len(table_data['Task']))]],
font=dict(color='#2c3e50', size=11, family='Arial'),
align=['center', 'left', 'center', 'center', 'center'],
height=30
)
)])
fig.update_layout(
title={'text': "Best Model Performance Summary by Task",
'font': {'family': 'Arial', 'size': 14, 'color': '#2c3e50'}},
font=dict(family="Arial", size=11), # allinea font
height=500,
margin=dict(l=20, r=20, t=60, b=100)
)
# Caption
fig.add_annotation(
text="No single model achieves the highest performance across all tasks.",
xref="paper", yref="paper",
x=0.5, y=-0.15,
showarrow=False,
font=dict(size=12, color="gray", family="Arial"),
align="center",
xanchor="center"
)
return fig
def create_prompt_heatmap(dataframe):
"""
Heatmap con percentuale di modelli che hanno ottenuto le best performance con ciascun prompt per ogni task,
mostrando solo i valori pertinenti:
- Prompt 1-6: solo per task multiple-choice
- Prompt 7-8: solo per SU
- Prompt 9-10: solo per LS, NER, REL
"""
tasks = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]
generative_tasks = ["LS", "SU", "NER", "REL"]
mc_tasks = [t for t in tasks if t not in generative_tasks]
all_prompt_ids = set()
for task in tasks:
prompt_col = f"{task} Best Prompt Id"
if prompt_col in dataframe.columns:
all_prompt_ids.update(dataframe[prompt_col].dropna().unique())
prompt_ids = sorted(all_prompt_ids, key=int)
matrix = []
hover_texts = []
for pid in prompt_ids:
row = []
hover_row = []
for task in tasks:
prompt_col = f"{task} Best Prompt Id"
pid_int = int(pid)
# Filtri personalizzati
if pid_int <= 6 and task in generative_tasks:
row.append(None)
hover_row.append("")
elif pid_int in [7, 8] and task != "SU":
row.append(None)
hover_row.append("")
elif pid_int in [9, 10] and task not in ["LS", "NER", "REL"]:
row.append(None)
hover_row.append("")
elif prompt_col in dataframe.columns:
total = len(dataframe[prompt_col].dropna())
count = (dataframe[prompt_col] == pid).sum()
percentage = (count / total * 100) if total > 0 else 0
row.append(percentage)
hover_row.append(
f"<b>Prompt {pid} - {task}</b><br>"
f"Models: {count}/{total}<br>"
f"Percentage: {percentage:.1f}%"
)
else:
row.append(0)
hover_row.append(f"<b>Prompt {pid} - {task}</b><br>No data")
matrix.append(row)
hover_texts.append(hover_row)
# Ticktext colorati: blu per 1-6, arancio per 7-10
ticktext = []
for pid in prompt_ids:
pid_int = int(pid)
#if pid_int <= 6:
ticktext.append(f'<span style="color:#1f77b4;">P{pid} </span>') # blu
#else:
#ticktext.append(f'<span style="color:#ff7f0e;">P{pid}</span>') # arancio
fig = go.Figure(data=go.Heatmap(
z=matrix,
x=tasks,
y=prompt_ids,
colorscale=[
[0, '#f7fbff'],
[0.2, '#deebf7'],
[0.4, '#9ecae1'],
[0.6, '#4292c6'],
[0.8, '#2171b5'],
[1, '#08519c']
],
text=[[f"{val:.0f}%" if val is not None else "" for val in row] for row in matrix],
texttemplate="%{text}",
textfont={"size": 11, "family": "Arial"},
hovertemplate='%{customdata}<extra></extra>',
customdata=hover_texts,
colorbar=dict(title="% Models", ticksuffix="%"),
zmin=0,
zmax=100
))
fig.update_yaxes(
tickmode='array',
tickvals=prompt_ids,
ticktext=ticktext,
tickfont={"size": 11, "family": "Arial"}
)
fig.update_layout(
title={'text': "Most Effective Prompts per Task Across Models",
'font': {'family': 'Arial', 'size': 14, 'color': '#2c3e50'}},
xaxis_title="Task",
yaxis_title="Prompt Variant",
font=dict(family="Arial", size=11), # allinea font con line_chart
margin=dict(b=150),
template="plotly_white",
dragmode=False,
height=500
)
fig.add_annotation(
text=(
"Prompts 1β6 are for multiple-choice tasks, and prompts 7β10 are for generative tasks. Darker cells indicate<br>"
"the percentage of models for which a prompt achieved the top performance, with no prompt being best for all tasks.<br>"
),
xref="paper", yref="paper",
x=0.5, y=-0.30,
showarrow=False,
font=dict(size=11, color="gray", family="Arial"),
align="center",
xanchor="center"
)
fig.update_xaxes(fixedrange=True)
fig.update_yaxes(fixedrange=True)
return fig
def highlight_best_per_task(df):
"""Add π‘ symbol next to the maximum value in each task column"""
task_columns = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]
df = df.copy()
for col in task_columns:
if col in df.columns:
max_val = df[col].max()
df[col] = df[col].apply(
lambda x: f"{x:.1f}πΊ" if x == max_val else f"{x:.1f}"
)
return df
def theoretical_performance(df_hash):
"""
Theoretical performance of a model that scores the highest on every individual task
"""
# This is a placeholder - you'd need to pass the actual dataframe
# In practice, you'd compute this once and store it
#fields = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]
return 75.0 # Placeholder value
def scale_sizes(values, min_size=8, max_size=30):
"""Normalize sizes for scatter plot markers """
if not values:
return []
vmin, vmax = min(values), max(values)
if vmax == vmin:
return [(min_size + max_size) / 2] * len(values)
return [
min_size + (val - vmin) / (vmax - vmin) * (max_size - min_size)
for val in values
]
def extract_model_name(model_string):
"""Extract model name from HTML string."""
match = re.search(r'>([^<]+)<', model_string)
return match.group(1) if match else model_string
def create_line_chart(dataframe):
"""Create left chart."""
def scale_sizes(values, min_size=8, max_size=30):
vmin, vmax = min(values), max(values)
return [
min_size + (val - vmin) / (vmax - vmin) * (max_size - min_size) if vmax > vmin
else (min_size + max_size) / 2
for val in values
]
fig = go.Figure()
# Loop su 5-Shot e 0-Shot
for shot, color in [(True, "blue"), (False, "red")]:
df = dataframe[dataframe["IS_FS"] == shot]
x = df["#Params (B)"].tolist()
y = df["Avg. Comb. Perf. β¬οΈ"].tolist()
labels = [
re.search(r'>([^<]+)<', m).group(1) if isinstance(m, str) and re.search(r'>([^<]+)<', m) else str(m)
for m in df["Model"].tolist()
]
fig.add_trace(go.Scatter(
x=x,
y=y,
mode="markers",
name="5-Shot" if shot else "0-Shot",
marker=dict(color=color, size=scale_sizes(x)),
hovertemplate="<b>%{customdata}</b><br>#Params: %{x}<br>Performance: %{y}<extra></extra>",
customdata=labels,
))
# Show the best model
all_y = dataframe["Avg. Comb. Perf. β¬οΈ"].tolist()
if all_y:
max_idx = all_y.index(max(all_y))
max_x = dataframe["#Params (B)"].iloc[max_idx]
max_y = all_y[max_idx]
max_label = re.search(r'>([^<]+)<', dataframe["Model"].iloc[max_idx]).group(1)
fig.add_annotation(
x=max_x,
y=max_y,
text=max_label,
showarrow=True,
arrowhead=2,
arrowsize=1,
arrowwidth=2,
arrowcolor="black",
font=dict(size=11, color="black"),
xshift=10, yshift=10,
ax=-30, ay=-20,
xanchor="right"
)
# Layout
fig.update_layout(
title="Average Combined Performance vs #Params",
xaxis_title="#Params (B)", yaxis_title="Average Combined Performance",
template="plotly_white", hovermode="closest",
font=dict(family="Arial", size=10), dragmode=False,
xaxis=dict(tickvals=[0, 25, 50, 75, 100, 125], ticktext=["0", "25", "50", "75", "100"]),
yaxis=dict(tickvals=[0, 20, 40, 60, 80, 100], range=[0, 100])
)
# Caption
fig.add_annotation(
text="Accuracy generally rises with #Params, but smaller models <br>"
"with 5-shot can outperform larger zero-shot models.",
xref="paper", yref="paper", x=0.5, y=-0.3,
showarrow=False, font=dict(size=11, color="gray"),
align="center", xanchor="center"
)
fig.update_xaxes(fixedrange=True, rangeslider_visible=False)
fig.update_yaxes(fixedrange=True)
return fig
def create_boxplot_task(dataframe=None, baselines=None, references=None):
"""Create right chart"""
tasks = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]
# Dati di default se non forniti
if dataframe is None:
np.random.seed(42)
dataframe = pd.DataFrame({task: np.random.uniform(0.4, 0.9, 20) * 100 for task in tasks})
if baselines is None:
baselines = {task: np.random.randint(50, 70) for task in tasks}
if references is None:
references = {}
colors = ["#1f77b4", "#ff7f0e", "#2ca02c", "#d62728", "#9467bd",
"#8c564b", "#e377c2", "#7f7f7f", "#bcbd22", "#17becf"]
fig = go.Figure()
for i, task in enumerate(tasks):
if task not in dataframe.columns:
continue
y_data = dataframe[task].dropna().tolist()
# Boxplot
fig.add_trace(go.Box(
y=y_data,
name=task,
marker=dict(color=colors[i]),
line=dict(color="black", width=2),
fillcolor=colors[i],
opacity=0.7,
hovertemplate="<b>"+task+"</b><br>Accuracy: %{y:.2f}%<extra></extra>",
hoverlabel=dict(bgcolor=colors[i], font_color="white"),
width=0.6,
whiskerwidth=0.2,
quartilemethod="linear"
))
# Linea baseline
baseline_value = baselines.get(task)
if baseline_value is not None:
fig.add_shape(
type="line",
x0=i - 0.3, x1=i + 0.3,
y0=baseline_value, y1=baseline_value,
line=dict(color="black", width=2, dash="dot"),
xref="x", yref="y"
)
# Linea reference GPT-4o
reference_value = references.get(task)
if reference_value is not None:
fig.add_shape(
type="line",
x0=i - 0.3, x1=i + 0.3,
y0=reference_value, y1=reference_value,
line=dict(color="red", width=2, dash="dashdot"),
xref="x", yref="y"
)
# Layout
fig.update_layout(
title="Distribution of Model Accuracy by Task",
xaxis_title="Task",
yaxis_title="Combined Performance",
template="plotly_white",
boxmode="group",
dragmode=False,
font=dict(family="Arial", size=10),
margin=dict(b=80),
)
# Caption
fig.add_annotation(
text=(
"In tasks like TE and SA, models approach the accuracy of supervised models at EVALITA (dashed black line).<br>"
"In NER and REL they remain lower. Dashed red lines show GPT-4o reference results for generative tasks."
),
xref="paper", yref="paper",
x=0.5, y=-0.30,
showarrow=False,
font=dict(size=11, color="gray"),
align="center"
)
fig.update_yaxes(range=[0, 100], fixedrange=True)
fig.update_xaxes(fixedrange=True)
return fig
def create_medal_assignments(sorted_df):
"""Function for medal assignment logic"""
medals = {
'large_fs': False, 'medium_fs': False, 'small_fs': False,
'large_0shot': False, 'medium_0shot': False, 'small_0shot': False
}
new_model_column = []
for _, row in sorted_df.iterrows():
model_name = row['Model']
size = row["Size"]
is_fs = row['IS_FS']
if is_fs: # 5-Few-Shot
if size == "π΅π΅π΅" and not medals['large_fs']:
model_name = f"{model_name} π΅π΅π΅π"
medals['large_fs'] = True
elif size == "π΅π΅" and not medals['medium_fs']:
model_name = f"{model_name} π΅π΅π"
medals['medium_fs'] = True
elif size == "π΅" and not medals['small_fs']:
model_name = f"{model_name} π΅π"
medals['small_fs'] = True
else: # 0-Shot
if size == "π΅π΅π΅" and not medals['large_0shot']:
model_name = f"{model_name} π΅π΅π΅ποΈ"
medals['large_0shot'] = True
elif size == "π΅π΅" and not medals['medium_0shot']:
model_name = f"{model_name} π΅π΅ποΈ"
medals['medium_0shot'] = True
elif size == "π΅" and not medals['small_0shot']:
model_name = f"{model_name} π΅ποΈ"
medals['small_0shot'] = True
new_model_column.append(model_name)
return new_model_column
def create_leaderboard_base(sorted_dataframe, field_list, hidden_columns):
"""Base leaderboard creation with common parameters. """
return Leaderboard(
value=sorted_dataframe,
datatype=[c.type for c in field_list],
search_columns=[AutoEvalColumn.model.name],
hide_columns=hidden_columns,
filter_columns=[
ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Shot Learning (FS)"),
ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0, max=100, default=[0, 100],
label="Select the number of parameters (B)"),
],
bool_checkboxgroup_label="Evaluation Mode",
interactive=False,
)
def init_leaderboard(dataframe, default_selection=None, hidden_columns=None):
"""Leaderboard initialization """
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
# Sort and reset index
sorted_dataframe = dataframe.sort_values(by="Avg. Comb. Perf. β¬οΈ", ascending=False).reset_index(drop=True)
sorted_dataframe["Rank"] = sorted_dataframe.index + 1
# Apply medal assignments
sorted_dataframe["Model"] = create_medal_assignments(sorted_dataframe)
# Show the best values for tasks
sorted_dataframe = highlight_best_per_task(sorted_dataframe)
field_list = fields(AutoEvalColumn)
return create_leaderboard_base(sorted_dataframe, field_list, hidden_columns)
def update_task_leaderboard(dataframe, default_selection=None, hidden_columns=None):
""" Task-specific leaderboard update."""
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
# Sort and reset index
sorted_dataframe = dataframe.sort_values(by="Comb. Perf. β¬οΈ", ascending=False).reset_index(drop=True)
sorted_dataframe["Rank"] = sorted_dataframe.index + 1
# Apply medal assignments
sorted_dataframe["Model"] = create_medal_assignments(sorted_dataframe)
field_list = fields(AutoEvalColumn)
return Leaderboard(
value=sorted_dataframe,
datatype=[c.type for c in field_list] + [int],
search_columns=[AutoEvalColumn.model.name],
hide_columns=hidden_columns,
filter_columns=[
ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Shot Learning (FS)"),
ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0, max=100, default=[0, 100],
label="Select the number of parameters (B)"),
],
bool_checkboxgroup_label="Evaluation Mode",
interactive=False
)
def download_snapshot(repo, local_dir, max_retries=3):
"""Snapshot download with retry logic."""
for attempt in range(max_retries):
try:
logger.info(f"Downloading from {repo} to {local_dir} (attempt {attempt + 1}/{max_retries})")
snapshot_download(
repo_id=repo,
local_dir=local_dir,
repo_type="dataset",
tqdm_class=None,
etag_timeout=30,
token=TOKEN
)
return True
except Exception as e:
logger.error(f"Error downloading {repo} (attempt {attempt + 1}): {e}")
if attempt == max_retries - 1:
logger.error(f"Failed to download {repo} after {max_retries} attempts")
return False
return False
def restart_space():
"""Restart the Hugging Face space."""
try:
logger.info("Restarting space... ")
API.restart_space(repo_id=REPO_ID)
except Exception as e:
logger.error(f"Error restarting space: {e}")
def create_title_html():
"""Function for title HTML."""
return """
<div class="title-header">
<h1 class="title-text">
EVALITA-LLM Leaderboard
</h1>
<a href="https://huggingface.co/spaces/mii-llm/open_ita_llm_leaderboard" target="_blank" class="title-link">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24">
<path d="M3.9 12a5 5 0 0 1 7.07-7.07l1.41 1.41-1.41 1.41-1.42-1.42a3 3 0 1 0 4.24 4.24l3.54-3.54a5 5 0 0 1-7.07 7.07l-1.41-1.41 1.41-1.41 1.42 1.42z"/>
<path d="M20.1 12a5 5 0 0 1-7.07 7.07l-1.41-1.41 1.41-1.41 1.42 1.42a3 3 0 1 0-4.24-4.24l-3.54 3.54a5 5 0 0 1 7.07-7.07l1.41 1.41-1.41 1.41-1.42-1.42z"/>
</svg>
Open Italian LLM Leaderboard
</a>
</div>
"""
def create_credits_markdown():
"""Credits section."""
return """
**This project has benefited from the following support:**
- π§ **Codebase**: Based on and extended from the Open Italian LLM Leaderboard, developed by **Alessandro Ercolani** and **Samuele Colombo**. We warmly thank them for their invaluable support and guidance in implementing this leaderboard.
- πΆ **Funding**: Partially supported by the PNRR project **FAIR - Future AI Research (PE00000013)**, under the NRRP MUR program funded by **NextGenerationEU**.
- π₯οΈ **Computation**: We gratefully acknowledge **CINECA** for granting access to the **LEONARDO** supercomputer.
"""
# Main initialization
def initialize_app():
"""Initialize the application ."""
try:
# Download snapshots
queue_success = download_snapshot(QUEUE_REPO, EVAL_REQUESTS_PATH)
results_success = download_snapshot(RESULTS_REPO, EVAL_RESULTS_PATH)
if not (queue_success and results_success):
logger.error("Failed to download required data")
return None, None, None, None, None
# Load leaderboard data
leaderboard_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df(
EVAL_REQUESTS_PATH, EVAL_COLS)
# Calculate theoretical max performance
theoretical_max = theoretical_performance(hash(str(leaderboard_df.values.tobytes())))
return leaderboard_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df, theoretical_max
except Exception as e:
logger.error(f"Error initializing app: {e}")
return None, None, None, None, None
# Initialize data
LEADERBOARD_DF, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df, theoretical_max_combined_perf = initialize_app()
LEADERBOARD_DF = map_prompt_ids_for_generation(LEADERBOARD_DF)
if LEADERBOARD_DF is None:
# Fallback behavior
logger.error("Failed to initialize app data")
theoretical_max_combined_perf = 0.0
# Main Gradio interface
def create_gradio_interface():
"""The main Gradio interface."""
demo = gr.Blocks(css=custom_css)
with demo:
# Titolo
gr.HTML(create_title_html())
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
# Tabs principali
with gr.Tabs(elem_classes="tab-buttons") as tabs:
# π
Benchmark
with gr.TabItem("π
Benchmark"):
if LEADERBOARD_DF is not None:
# Labels dei campi affiancate
with gr.Row():
gr.HTML(f"""
<div class="performance-metrics">
<div class="metric-label" title="Total number of configurations (zero-shot and 5-few-shot) of the models evaluated in the leaderboard.">
Models tested: {len(LEADERBOARD_DF)}
</div>
<div class="metric-label" title="Average accuracy of the evaluated models.">
Avg combined perf.: {LEADERBOARD_DF['Avg. Comb. Perf. β¬οΈ'].mean():.2f}
</div>
<div class="metric-label" title="Standard deviation of the evaluated models' performance.">
Std. Dev. {LEADERBOARD_DF['Avg. Comb. Perf. β¬οΈ'].std():.2f}
</div>
<div class="metric-label" title="Best evaluated model.">
Best model: {LEADERBOARD_DF.loc[LEADERBOARD_DF['Avg. Comb. Perf. β¬οΈ'].idxmax(), 'Model']}
</div>
<div class="metric-label" title="Accuracy of the best evaluated model.">
Best model accuracy: {LEADERBOARD_DF.loc[LEADERBOARD_DF['Avg. Comb. Perf. β¬οΈ'].idxmax(), 'Avg. Comb. Perf. β¬οΈ']:.2f}
</div>
<div class="metric-label" title="Maximum achievable accuracy based on the highest performance for each task by any model in the leaderboard.">
Ideal model: {theoretical_max_combined_perf:.2f}
</div>
</div>
""")
# Grafici affiancati
with gr.Row():
gr.Plot(value=create_line_chart(LEADERBOARD_DF), elem_id="line-chart")
gr.Plot(value=create_boxplot_task(LEADERBOARD_DF, BASELINES, REFERENCES), elem_id="line-chart")
with gr.Row():
gr.Plot(value=create_prompt_heatmap(LEADERBOARD_DF), elem_id="line-chart")
gr.Plot(value=create_best_model_comparison_table(LEADERBOARD_DF), elem_id="line-chart")
# Leaderboard
leaderboard = init_leaderboard(
LEADERBOARD_DF,
default_selection=['Rank', 'Size', 'FS', 'Model', "Avg. Comb. Perf. β¬οΈ",
"TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"],
hidden_columns=[col for col in LEADERBOARD_DF.columns if
col not in ['Rank', 'Size', 'FS', 'Model', "Avg. Comb. Perf. β¬οΈ",
"TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]]
)
# π About
with gr.TabItem("π About"):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
# π Submit a new model to evaluate
with gr.TabItem("π Submit"):
gr.Markdown("# π Model Evaluation Request", elem_classes="markdown-text")
gr.Markdown("""
**Fill out the form below to request evaluation of your model on EVALITA-LLM.**
Once submitted, our team will automatically receive a notification. We will evaluate the
submissionβs relevance for both research and commercial purposes, as well as assess its feasibility.
""", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
# HuggingFace model name field
model_name_input = gr.Textbox(
label="HuggingFace Model Name",
placeholder="e.g., microsoft/DialoGPT-medium",
info="Enter the complete model name as it appears on HuggingFace Hub (organization/model-name)",
elem_id="model-name-input"
)
# User email field
user_name_input = gr.Textbox(
label="Your email address",
placeholder="e.g., mario.rossi@example.com",
info="Enter your email address for communication",
elem_id="user-email-input"
)
# Affiliation field
user_affiliation_input = gr.Textbox(
label="Affiliation",
placeholder="e.g., University of Milan, Google Research, Freelancer",
info="Enter your affiliation (university, company, organization)",
elem_id="user-affiliation-input"
)
# Submit button
submit_request_button = gr.Button(
"π€ Submit Request",
variant="primary",
elem_id="submit-request-button"
)
# Result area
submission_status = gr.Markdown(elem_id="submission-status")
# Connect button to function
submit_request_button.click(
validate_and_submit_request,
inputs=[model_name_input, user_name_input, user_affiliation_input],
outputs=submission_status
)
# Additional information
with gr.Accordion("βΉοΈ Additional Information", open=False):
gr.Markdown("""
**What happens after submission:**
1. Your request is automatically sent to the EVALITA-LLM team
2. We verify that the model is accessible on HuggingFace
3. We contact you to confirm inclusion in the evaluation
4. The model is added to the evaluation queue
**Model requirements:**
- Model must be publicly accessible on HuggingFace Hub
- Must be compatible with the EleutherAI/lm-evaluation-harness framework
- Must have a license that allows evaluation
**Evaluation tasks:**
Your model will be evaluated on all tasks: TE, SA, HS, AT, WIC, FAQ, LS, SU, NER, REL.
""", elem_classes="markdown-text")
# Separators
with gr.TabItem("β", interactive=False):
gr.Markdown("", elem_classes="markdown-text")
# Task-specific tabs (Multiple Choice)
if LEADERBOARD_DF is not None:
for task, metadata in TASK_METADATA_MULTIPLECHOICE.items():
with gr.TabItem(f"{metadata['icon']}{task}"):
task_description = TASK_DESCRIPTIONS.get(task, "Description not available.")
gr.Markdown(task_description, elem_classes="markdown-text")
leaderboard_task = update_task_leaderboard(
LEADERBOARD_DF.rename(columns={
f"{task} Prompt Average": "Prompt Average",
f"{task} Prompt Std": "Prompt Std",
f"{task} Best Prompt": "Best Prompt",
f"{task} Best Prompt Id": "Best Prompt Id",
task: "Comb. Perf. β¬οΈ"
}),
default_selection=['Rank', 'Size', 'FS', 'Model', 'Comb. Perf. β¬οΈ',
'Prompt Average', 'Prompt Std', 'Best Prompt', 'Best Prompt Id'],
hidden_columns=[col for col in LEADERBOARD_DF.columns if
col not in ['Rank', 'Size', 'FS', 'Model', 'Comb. Perf. β¬οΈ',
'Prompt Average', 'Prompt Std', 'Best Prompt',
'Best Prompt Id']]
)
# Separators
with gr.TabItem("β", interactive=False):
gr.Markdown("", elem_classes="markdown-text")
# Task-specific tabs (Generative)
if LEADERBOARD_DF is not None:
for task, metadata in TASK_METADATA_GENERATIVE.items():
with gr.TabItem(f"{metadata['icon']}{task}"):
task_description = TASK_DESCRIPTIONS.get(task, "Description not available.")
gr.Markdown(task_description, elem_classes="markdown-text")
leaderboard_task = update_task_leaderboard(
LEADERBOARD_DF.rename(columns={
f"{task} Prompt Average": "Prompt Average",
f"{task} Prompt Std": "Prompt Std",
f"{task} Best Prompt": "Best Prompt",
f"{task} Best Prompt Id": "Best Prompt Id",
task: "Comb. Perf. β¬οΈ"
}),
default_selection=['Rank', 'Size', 'FS', 'Model', 'Comb. Perf. β¬οΈ',
'Prompt Average', 'Prompt Std', 'Best Prompt', 'Best Prompt Id'],
hidden_columns=[col for col in LEADERBOARD_DF.columns if
col not in ['Rank', 'Size', 'FS', 'Model', 'Comb. Perf. β¬οΈ',
'Prompt Average', 'Prompt Std', 'Best Prompt',
'Best Prompt Id']]
)
# Citation e Credits
with gr.Accordion("π Citation", open=False):
gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True
)
with gr.Accordion("π Credits", open=False):
gr.Markdown(create_credits_markdown())
return demo
# Create and configure the demo
demo = create_gradio_interface()
# Background scheduler for space restart
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
# Launch configuration
if __name__ == "__main__":
demo.queue(default_concurrency_limit=40).launch(
debug=True,
show_error=True
)
|