File size: 2,469 Bytes
4bda4b5
8dd56db
4bda4b5
 
8dd56db
 
 
 
 
 
 
 
 
 
 
 
 
076f083
8dd56db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18ea130
 
8dd56db
 
 
 
18ea130
8dd56db
9225493
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import gradio as gr
from huggingface_hub import InferenceClient


def respond(
    message,
    history: list[dict[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
    hf_token: gr.OAuthToken,
):
    """
    For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
    """
    client = InferenceClient(token=hf_token.token, model="openai/gpt-oss-20b")

    messages = [{"role": "system", "content": system_message}]

    messages.extend(history)

    messages.append({"role": "user", "content": message})

    response = ""

    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        choices = message.choices
        token = ""
        if len(choices) and choices[0].delta.content:
            token = choices[0].delta.content

        response += token
        yield response


"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
chatbot = gr.ChatInterface(
    respond,
    type="messages",
    additional_inputs=[
        gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
)

with gr.Blocks() as demo:
    with gr.Sidebar():
        gr.LoginButton()
    chatbot.render()


if __name__ == "__main__":
    demo.launch()
def chat(prompt, max_length=200):
    # Convertimos el prompt en tensores para el modelo
    inputs = tokenizer.encode(prompt, return_tensors="pt").to(device)
    
    # Generamos la respuesta del modelo
    outputs = model.generate(
        inputs,
        max_length=max_length,
        pad_token_id=tokenizer.eos_token_id,
        do_sample=True,
        top_p=0.9,
        temperature=0.7
    )
    
    # ⚡ Aquí ponemos el código para quitar la columna de tokens
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    
    # Devolvemos solo la respuesta en texto plano
    return response[len(prompt):].strip()