Spaces:
Running
Running
File size: 17,691 Bytes
1636abd dc56cce a21bd5b dc56cce 77ead37 28f8ac4 dc56cce c822327 c163f90 c822327 dc56cce bdfc013 dc56cce 1636abd dc56cce d988980 1636abd d988980 1636abd dc56cce d988980 1636abd dc56cce 1636abd dc56cce a21bd5b 1636abd dc56cce 1636abd a21bd5b 1636abd a21bd5b 1636abd 0c2088f 1636abd 0c2088f a21bd5b 1636abd a21bd5b 1636abd a21bd5b 1636abd a21bd5b 1636abd dc56cce a21bd5b 1636abd dc56cce 1636abd dc56cce a21bd5b 1636abd dc56cce a21bd5b 1636abd dc56cce bb64eee dc56cce a21bd5b 0c2088f 1636abd dc56cce a21bd5b dc56cce a21bd5b dc56cce a21bd5b dc56cce a21bd5b dc56cce a21bd5b dc56cce a21bd5b dc56cce a21bd5b dc56cce a21bd5b f3ce0ca bdfc013 a21bd5b dc56cce 1636abd dc56cce 1636abd a21bd5b dc56cce a21bd5b 1636abd dc56cce a21bd5b dc56cce 0c2088f c822327 bdfc013 0c2088f a21bd5b 1636abd a21bd5b bdfc013 a21bd5b 1636abd a21bd5b 1636abd a21bd5b dc56cce 1636abd dc56cce 0c2088f a21bd5b 0c2088f a21bd5b 1636abd a21bd5b dc56cce d988980 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 |
import gradio as gr
import subprocess
import os
import sys
from datetime import datetime
import shutil
TRAINING_SCRIPT = "HF_LayoutLM_with_Passage.py"
MODEL_OUTPUT_DIR = "checkpoints"
MODEL_FILE_NAME = "layoutlmv3_crf_passage.pth"
MODEL_FILE_PATH = os.path.join(MODEL_OUTPUT_DIR, MODEL_FILE_NAME)
# ----------------------------------------------------------------
def retrieve_model():
"""
Checks for the final model file and prepares it for download.
Useful for when the training job finishes server-side but the
client connection has timed out.
"""
MODEL_OUTPUT_DIR = "checkpoints"
MODEL_FILE_NAME = "layoutlmv3_crf_passage.pth"
MODEL_FILE_PATH = os.path.join(MODEL_OUTPUT_DIR, MODEL_FILE_NAME)
if os.path.exists(MODEL_FILE_PATH):
file_size = os.path.getsize(MODEL_FILE_PATH) / (1024 * 1024) # Size in MB
# CRITICAL: Copy to a simple location that Gradio can reliably serve
import tempfile
temp_dir = tempfile.gettempdir()
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
temp_model_path = os.path.join(temp_dir, f"layoutlmv3_trained_{timestamp}_recovered.pth")
try:
shutil.copy2(MODEL_FILE_PATH, temp_model_path)
download_path = temp_model_path
log_output = (
f"--- Model Status Check: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')} ---\n"
f"π SUCCESS! A trained model was found and recovered. Boobs! AASTIK MERA NAAM\n"
f"π¦ Model file: {MODEL_FILE_PATH}\n"
f"π Model size: {file_size:.2f} MB\n"
f"π Download path prepared: {download_path}\n\n"
f"β¬οΈ Click the 'π₯ Download Model' button below to save your model."
)
return log_output, download_path, gr.Button(visible=True)
except Exception as e:
log_output = (
f"--- Model Status Check FAILED ---\n"
f"β οΈ Trained model found, but could not prepare for download: {e}\n"
f"π Original Path: {MODEL_FILE_PATH}. Try again or check Space logs."
)
return log_output, None, gr.Button(visible=False)
else:
log_output = (
f"--- Model Status Check: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')} ---\n"
f"β Model file not found at {MODEL_FILE_PATH}.\n"
f"Training may still be running or it failed. Check back later."
)
return log_output, None, gr.Button(visible=False)
def clear_memory(dataset_file: gr.File):
"""
Deletes the model output directory and the uploaded dataset file.
"""
MODEL_OUTPUT_DIR = "checkpoints"
log_output = f"--- Memory Clear Started: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')} ---\n"
# 1. Clear Model Checkpoints Directory
if os.path.exists(MODEL_OUTPUT_DIR):
try:
shutil.rmtree(MODEL_OUTPUT_DIR)
log_output += f"β
Successfully deleted model directory: {MODEL_OUTPUT_DIR}\n"
except Exception as e:
log_output += f"β ERROR deleting model directory {MODEL_OUTPUT_DIR}: {e}\n"
else:
log_output += f"βΉοΈ Model directory not found: {MODEL_OUTPUT_DIR} (Nothing to delete)\n"
# 2. Clear Uploaded Dataset File (Temporary file cleanup)
if dataset_file is not None:
input_path = dataset_file.name if hasattr(dataset_file, 'name') else str(dataset_file)
if os.path.exists(input_path):
try:
os.remove(input_path)
log_output += f"β
Successfully deleted uploaded dataset file: {input_path}\n"
except Exception as e:
log_output += f"β ERROR deleting dataset file {input_path}: {e}\n"
else:
log_output += f"βΉοΈ Uploaded dataset file not found at {input_path}.\n"
else:
log_output += f"βΉοΈ No dataset file currently tracked for deletion.\n"
# 3. Final message and state reset
log_output += f"--- Memory Clear Complete: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')} ---\n"
log_output += "β¨ Files and checkpoints have been removed. You can now start a fresh training run."
# Reset log_output, model_path_state, download_btn visibility, and model_download component
return log_output, None, gr.Button(visible=False), None
def train_model(dataset_file: gr.File, batch_size: int, epochs: int, lr: float, max_len: int, progress=gr.Progress()):
"""
Handles the Gradio submission and executes the training script using subprocess.
Yields logs in real-time for user feedback.
"""
# 1. Setup: Create output directory if it doesn't exist
os.makedirs(MODEL_OUTPUT_DIR, exist_ok=True)
# 2. File Handling: Use the temporary path of the uploaded file
if dataset_file is None:
yield "β ERROR: Please upload a file.", None, gr.Button(visible=False)
return
# CRITICAL FIX: dataset_file is a gradio.File object, use .name to get the path
# This is a temporary file path like /tmp/gradio/.../filename.json
input_path = dataset_file.name if hasattr(dataset_file, 'name') else str(dataset_file)
# Verify the file actually exists before proceeding
if not os.path.exists(input_path):
error_msg = f"β ERROR: Uploaded file not found at {input_path}. Please try uploading again."
yield error_msg, None, gr.Button(visible=False)
return
if not input_path.lower().endswith(".json"):
yield "β ERROR: Please upload a valid Label Studio JSON file (.json).", None, gr.Button(visible=False)
return
progress(0.1, desc="Starting LayoutLMv3 Training...")
log_output = f"--- Training Started: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')} ---\n"
# 3. Construct the subprocess command
command = [
sys.executable,
TRAINING_SCRIPT,
"--mode", "train",
"--input", input_path,
"--batch_size", str(batch_size),
"--epochs", str(epochs),
"--lr", str(lr),
"--max_len", str(max_len)
]
log_output += f"Executing command: {' '.join(command)}\n\n"
yield log_output, None, gr.Button(visible=False) # Initial yield
try:
# 4. Run the training script and capture output
process = subprocess.Popen(
command,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
text=True,
bufsize=1
)
# Stream logs in real-time
for line in iter(process.stdout.readline, ""):
log_output += line
# Print to console as well for debugging
print(line, end='')
# Yield updated logs in real-time
yield log_output, None, gr.Button(visible=False)
process.stdout.close()
return_code = process.wait()
# 5. Check for successful completion
if return_code == 0:
log_output += "\n" + "=" * 60 + "\n"
log_output += "β
TRAINING COMPLETE! Model saved successfully.\n"
log_output += "=" * 60 + "\n"
print("\nβ
TRAINING COMPLETE! Model saved.")
# 6. Verify model file exists
if os.path.exists(MODEL_FILE_PATH):
file_size = os.path.getsize(MODEL_FILE_PATH) / (1024 * 1024) # Size in MB
log_output += f"\nπ¦ Model file found: {MODEL_FILE_PATH}"
log_output += f"\nπ Model size: {file_size:.2f} MB"
print(f"\nβ
Model exists at: {MODEL_FILE_PATH} ({file_size:.2f} MB)")
# CRITICAL: Copy to a simple location that Gradio can reliably serve
# Use the same temp directory pattern as the uploaded JSON file
import tempfile
temp_dir = tempfile.gettempdir()
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
# Create filename in temp directory
temp_model_path = os.path.join(temp_dir, f"layoutlmv3_trained_{timestamp}.pth")
try:
# Copy the model to temp directory
shutil.copy2(MODEL_FILE_PATH, temp_model_path)
log_output += f"\nπ Model copied to temporary download location"
log_output += f"\nπ Download path: {temp_model_path}"
print(f"β
Model copied to temp location: {temp_model_path}")
# Verify the copy exists
if os.path.exists(temp_model_path):
log_output += f"\nβ
Download file verified and ready!"
download_path = temp_model_path
else:
log_output += f"\nβ οΈ Warning: Temp copy verification failed, using original path"
download_path = MODEL_FILE_PATH
except Exception as e:
log_output += f"\nβ οΈ Could not create temp copy: {e}"
log_output += f"\nπ Using original path: {MODEL_FILE_PATH}"
print(f"β οΈ Copy failed: {e}, using original path")
download_path = MODEL_FILE_PATH
# Final success message
log_output += f"\n\n{'=' * 60}"
log_output += f"\nπ SUCCESS! Your model is ready for download."
log_output += f"\n{'=' * 60}"
log_output += f"\n\nβ¬οΈ Click the 'π₯ Download Model' button below to save your model."
log_output += f"\nβ οΈ CRITICAL: Download NOW! File will be deleted when:"
log_output += f"\n - This tab is closed"
log_output += f"\n - Space restarts or goes idle"
log_output += f"\n - System clears temp files"
log_output += f"\n\nπ₯ The file will download as a .pth file to your computer's Downloads folder."
log_output += f"\n\n{'=' * 60}\n"
# Return final logs and make download button visible
# IMPORTANT: Return the path that Gradio can access
yield log_output, download_path, gr.Button(visible=True)
return
else:
log_output += f"\nβ οΈ WARNING: Training completed, but model file not found at expected path ({MODEL_FILE_PATH})."
log_output += f"\nπ Checking directory contents..."
# List files in checkpoints directory for debugging
if os.path.exists(MODEL_OUTPUT_DIR):
files = os.listdir(MODEL_OUTPUT_DIR)
log_output += f"\nπ Files in {MODEL_OUTPUT_DIR}: {files}"
else:
log_output += f"\nβ Directory {MODEL_OUTPUT_DIR} does not exist!"
yield log_output, None, gr.Button(visible=False)
return
else:
log_output += f"\n\n{'=' * 60}\n"
log_output += f"β TRAINING FAILED with return code {return_code}\n"
log_output += f"{'=' * 60}\n"
log_output += f"\nPlease check the logs above for error details.\n"
yield log_output, None, gr.Button(visible=False)
return
except FileNotFoundError:
error_msg = f"β ERROR: The training script '{TRAINING_SCRIPT}' was not found. Ensure it is in the root directory of your Space."
print(error_msg)
yield log_output + "\n" + error_msg, None, gr.Button(visible=False)
return
except Exception as e:
error_msg = f"β An unexpected error occurred: {e}"
print(error_msg)
import traceback
print(traceback.format_exc())
yield log_output + "\n" + error_msg, None, gr.Button(visible=False)
return
# --- Gradio Interface Setup (using Blocks for a nicer layout) ---
with gr.Blocks(title="LayoutLMv3 Fine-Tuning App by Aastik", theme=gr.themes.Soft()) as demo:
gr.Markdown("# π LayoutLMv3 Fine-Tuning on Hugging Face Spaces")
gr.Markdown(
"""
Upload your Label Studio JSON file, set your hyperparameters, and click **Train Model** to fine-tune the LayoutLMv3 model.
**β οΈ IMPORTANT - Free Tier Users:**
- **Download your model IMMEDIATELY** after training completes!
- The model file is **temporary** and will be deleted when the Space restarts.
- A download button will appear below once training is complete.
- **Real-time logs** will stream during training so you can monitor progress.
**β±οΈ Timeout Note:** Training may timeout on free tier. Consider reducing epochs or batch size for faster training.
"""
)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### π Dataset Upload")
file_input = gr.File(
label="Upload Label Studio JSON Dataset",
file_types=[".json"]
)
gr.Markdown("---")
gr.Markdown("### βοΈ Training Parameters")
batch_size_input = gr.Slider(
minimum=1, maximum=16, step=1, value=4,
label="Batch Size",
info="Smaller = less memory, slower training"
)
epochs_input = gr.Slider(
minimum=1, maximum=10, step=1, value=3,
label="Epochs",
info="Fewer epochs = faster training (recommended: 3-5)"
)
lr_input = gr.Number(
value=5e-5, label="Learning Rate",
info="Default: 5e-5"
)
max_len_input = gr.Slider(
minimum=128, maximum=512, step=128, value=512,
label="Max Sequence Length",
info="Shorter = faster training, less memory"
)
train_button = gr.Button("π₯ Start Training", variant="primary", size="lg")
check_button = gr.Button("π Check Model Status/Download", variant="secondary", size="lg")
clear_button = gr.Button("π§Ή Clear Model/Dataset Files", variant="stop", size="lg")
with gr.Column(scale=2):
gr.Markdown("### π Training Progress (Real-Time Logs)")
log_output = gr.Textbox(
label="Training Logs - Updates in Real-Time",
lines=25,
max_lines=30,
autoscroll=True,
show_copy_button=True,
placeholder="Click 'Start Training' to begin...\n\nLogs will stream here in real-time as training progresses."
)
gr.Markdown("### β¬οΈ Download Trained Model")
# Hidden state to store the file path
model_path_state = gr.State(value=None)
# Download button (initially hidden)
download_btn = gr.Button(
"π₯ Download Model (.pth file)",
variant="primary",
size="lg",
visible=False
)
check_button.click(
fn=retrieve_model, # A new function we'll define
inputs=[],
outputs=[log_output, model_path_state, download_btn]
)
# File output for download
model_download = gr.File(
label="Your trained model will appear here after clicking Download",
interactive=False,
visible=True
)
clear_button.click(
fn=clear_memory,
inputs=[file_input], # Pass the uploaded file object to delete the temp file
outputs=[log_output, model_path_state, download_btn, model_download]
)
gr.Markdown(
"""
**π₯ Download Instructions:**
1. Wait for training to complete - watch the real-time logs above
2. Look for **"β
TRAINING COMPLETE!"** message
3. Click the **"π₯ Download Model"** button that appears above
4. Save the `.pth` file to your local machine
5. **Do this immediately** - file is temporary and will be deleted on Space restart!
**π§ Troubleshooting:**
- If download button doesn't appear, check the logs for errors
- Try reducing epochs or batch size if timeout occurs
- Ensure your JSON file is properly formatted
- Logs update in real-time - you can monitor training progress
"""
)
# Define the training action - now with real-time log streaming via yield
train_button.click(
fn=train_model,
inputs=[file_input, batch_size_input, epochs_input, lr_input, max_len_input],
outputs=[log_output, model_path_state, download_btn],
api_name="train"
)
# Define the download action
download_btn.click(
fn=lambda path: path,
inputs=[model_path_state],
outputs=[model_download]
)
gr.Markdown(
"""
---
### π About
This Space fine-tunes LayoutLMv3 with CRF for document understanding tasks including:
- Questions, Options, Answers
- Section Headings
- Passages
**Model Details:** LayoutLMv3-base + CRF layer for sequence labeling
**Features:**
- β
Real-time log streaming during training
- β
Progress monitoring with epoch/batch updates
- β
Immediate model download after completion
- β
Automatic file preparation for download
"""
)
if __name__ == "__main__":
demo.launch() |