File size: 7,958 Bytes
89b138d ea53c08 89b138d de4d166 89b138d 2fc646f 89b138d 2fc646f 89b138d 2fc646f 89b138d 2fc646f 89b138d 2fc646f 89b138d f8a669a 2fc646f de4d166 2fc646f de4d166 2fc646f f8a669a 2fc646f de4d166 2fc646f ea53c08 de4d166 ea53c08 89b138d ea53c08 2fc646f 89b138d 1120bba 89b138d de4d166 89b138d ea53c08 89b138d ea53c08 89b138d ea53c08 89b138d de4d166 89b138d 1120bba ea53c08 f8a669a de4d166 ea53c08 2fc646f ea53c08 89b138d de4d166 ea53c08 89b138d 97aa2c2 89b138d bff4d10 89b138d ea53c08 89b138d 1120bba 89b138d bff4d10 ea53c08 1120bba bff4d10 89b138d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
import os
import httpx
import json
import time
from fastapi import FastAPI, HTTPException
from fastapi.responses import JSONResponse
from pydantic import BaseModel, Field
from typing import List, Dict, Any, Optional, Union, Literal
from dotenv import load_dotenv
from sse_starlette.sse import EventSourceResponse
# Load environment variables from .env file
load_dotenv()
# --- Configuration ---
REPLICATE_API_TOKEN = os.getenv("REPLICATE_API_TOKEN")
if not REPLICATE_API_TOKEN:
raise ValueError("REPLICATE_API_TOKEN environment variable not set.")
# --- FastAPI App Initialization ---
app = FastAPI(
title="Replicate to OpenAI Compatibility Layer",
version="2.3.0 (Definitive Streaming Fix)",
)
# --- Pydantic Models ---
class ModelCard(BaseModel):
id: str; object: str = "model"; created: int = Field(default_factory=lambda: int(time.time())); owned_by: str = "replicate"
class ModelList(BaseModel):
object: str = "list"; data: List[ModelCard] = []
class ChatMessage(BaseModel):
role: Literal["system", "user", "assistant", "tool"]; content: Union[str, List[Dict[str, Any]]]
class OpenAIChatCompletionRequest(BaseModel):
model: str; messages: List[ChatMessage]; temperature: Optional[float] = 0.7; top_p: Optional[float] = 1.0; max_tokens: Optional[int] = None; stream: Optional[bool] = False
# --- Model Mapping ---
SUPPORTED_MODELS = {
"llama3-8b-instruct": "meta/meta-llama-3-8b-instruct",
"claude-4.5-haiku": "anthropic/claude-4.5-haiku"
}
# --- Helper Functions ---
def prepare_replicate_input(request: OpenAIChatCompletionRequest) -> Dict[str, Any]:
"""Prepares the input payload for Replicate, handling model-specific formats."""
payload = {}
if "claude" in request.model:
prompt_parts = []
system_prompt = None
image_url = None
for msg in request.messages:
if msg.role == "system":
system_prompt = str(msg.content)
elif msg.role == "user":
if isinstance(msg.content, list):
for item in msg.content:
if item.get("type") == "text":
prompt_parts.append(f"User: {item.get('text', '')}")
elif item.get("type") == "image_url":
image_url = item.get("image_url", {}).get("url")
else:
prompt_parts.append(f"User: {msg.content}")
elif msg.role == "assistant":
prompt_parts.append(f"Assistant: {msg.content}")
prompt_parts.append("Assistant:")
payload["prompt"] = "\n".join(prompt_parts)
if system_prompt: payload["system_prompt"] = system_prompt
if image_url: payload["image"] = image_url
else:
payload["messages"] = [msg.dict() for msg in request.messages]
if request.max_tokens is not None: payload["max_new_tokens"] = request.max_tokens
if request.temperature is not None: payload["temperature"] = request.temperature
if request.top_p is not None: payload["top_p"] = request.top_p
return payload
async def stream_replicate_native_sse(model_id: str, payload: dict):
"""Connects to Replicate's native SSE stream for token-by-token streaming."""
url = f"https://api.replicate.com/v1/models/{model_id}/predictions"
headers = {"Authorization": f"Bearer {REPLICATE_API_TOKEN}", "Content-Type": "application/json"}
async with httpx.AsyncClient(timeout=300) as client:
prediction = None
try:
response = await client.post(url, headers=headers, json={"input": payload, "stream": True})
response.raise_for_status()
prediction = response.json()
stream_url = prediction.get("urls", {}).get("stream")
if not stream_url:
error_detail = prediction.get("detail", "Failed to get stream URL.")
yield json.dumps({"error": {"message": error_detail}})
return
except httpx.HTTPStatusError as e:
try: yield json.dumps({"error": {"message": json.dumps(e.response.json())}})
except: yield json.dumps({"error": {"message": e.response.text}})
return
try:
async with client.stream("GET", stream_url, headers={"Accept": "text/event-stream"}) as sse:
sse.raise_for_status()
current_event = ""
async for line in sse.aiter_lines():
if line.startswith("event:"):
current_event = line[len("event:"):].strip()
elif line.startswith("data:"):
data = line[len("data:"):].strip()
if current_event == "output":
# *** THIS IS THE DEFINITIVE FIX ***
# Wrap the JSON parsing in a try-except block to gracefully
# handle empty or malformed data lines without crashing.
try:
content = json.loads(data)
chunk = {
"id": prediction["id"], "object": "chat.completion.chunk", "created": int(time.time()), "model": model_id,
"choices": [{"index": 0, "delta": {"content": content}, "finish_reason": None}]
}
yield json.dumps(chunk)
except json.JSONDecodeError:
# This will silently ignore any non-JSON data, like empty strings.
pass
elif current_event == "done":
break
except Exception as e:
yield json.dumps({"error": {"message": f"Streaming error: {str(e)}"}})
done_chunk = {
"id": prediction["id"] if prediction else "unknown", "object": "chat.completion.chunk", "created": int(time.time()), "model": model_id,
"choices": [{"index": 0, "delta": {}, "finish_reason": "stop"}]
}
yield json.dumps(done_chunk)
yield "[DONE]"
# --- API Endpoints ---
@app.get("/v1/models", response_model=ModelList)
async def list_models():
return ModelList(data=[ModelCard(id=model_name) for model_name in SUPPORTED_MODELS.keys()])
@app.post("/v1/chat/completions")
async def create_chat_completion(request: OpenAIChatCompletionRequest):
model_key = request.model
if model_key not in SUPPORTED_MODELS:
raise HTTPException(status_code=404, detail=f"Model not found. Supported models: {list(SUPPORTED_MODELS.keys())}")
replicate_model_id = SUPPORTED_MODELS[model_key]
replicate_input = prepare_replicate_input(request)
if request.stream:
return EventSourceResponse(stream_replicate_native_sse(replicate_model_id, replicate_input))
url = f"https://api.replicate.com/v1/models/{replicate_model_id}/predictions"
headers = {"Authorization": f"Bearer {REPLICATE_API_TOKEN}", "Content-Type": "application/json", "Prefer": "wait=120"}
async with httpx.AsyncClient(timeout=150) as client:
try:
response = await client.post(url, headers=headers, json={"input": replicate_input})
response.raise_for_status()
prediction = response.json()
output = "".join(prediction.get("output", []))
return JSONResponse(content={
"id": prediction["id"], "object": "chat.completion", "created": int(time.time()), "model": model_key,
"choices": [{"index": 0, "message": {"role": "assistant", "content": output}, "finish_reason": "stop"}],
"usage": {"prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}
})
except httpx.HTTPStatusError as e:
raise HTTPException(status_code=e.response.status_code, detail=e.response.text) |