File size: 16,148 Bytes
89b138d a9bb1ec 5d3f475 9f14d65 580cccc 89b138d 415ec30 89b138d b236837 9f14d65 89b138d 9f14d65 89b138d 415ec30 67e24f8 9f14d65 89b138d 2fc646f 89b138d 3830a6b 89b138d 3830a6b 89b138d 3830a6b 67e24f8 3830a6b a9bb1ec 3830a6b a9bb1ec 3830a6b a9bb1ec 3830a6b a9bb1ec 3830a6b a9bb1ec 3830a6b a9bb1ec 3830a6b a9bb1ec 3830a6b a9bb1ec 3830a6b a9bb1ec 3830a6b a9bb1ec 3830a6b a9bb1ec 3830a6b 2fc646f 415ec30 89b138d 415ec30 67e24f8 c466862 89b138d 415ec30 b236837 67e24f8 b236837 a9bb1ec a135be4 a9bb1ec 67e24f8 a9bb1ec 67e24f8 a9bb1ec a135be4 0f99721 a9bb1ec a135be4 c466862 a135be4 415ec30 67e24f8 a9bb1ec 67e24f8 a9bb1ec 63b36c2 67e24f8 415ec30 1120bba 89b138d 2767573 a9bb1ec 2767573 a9bb1ec 89b138d 415ec30 89b138d ea53c08 a9bb1ec 54de3fd 89b138d 54de3fd 0f99721 54de3fd a9bb1ec 54de3fd dafbe9c e014ad9 c5a8085 e014ad9 67e24f8 a9bb1ec e014ad9 a9bb1ec e014ad9 a9bb1ec 0f99721 a9bb1ec 67e24f8 a9bb1ec 67e24f8 5e2bd86 67e24f8 5e2bd86 67e24f8 a9bb1ec 0f99721 67e24f8 a9bb1ec e014ad9 a9bb1ec e014ad9 a9bb1ec 7b0c05f 415ec30 9f14d65 89b138d 67e24f8 415ec30 89b138d 9f14d65 a9bb1ec 67e24f8 415ec30 e014ad9 89b138d 0f99721 a9bb1ec b236837 a9bb1ec 67e24f8 a9bb1ec b236837 0f99721 a9bb1ec b236837 a9bb1ec 89b138d a9bb1ec 67e24f8 a9bb1ec 415ec30 a9bb1ec 0f99721 a9bb1ec 2767573 415ec30 e014ad9 a9bb1ec e014ad9 5d3f475 67e24f8 5d3f475 67e24f8 2767573 a9bb1ec 0f99721 a9bb1ec 67e24f8 0f99721 67e24f8 2767573 a9bb1ec 0f99721 a9bb1ec 0f99721 a9bb1ec e014ad9 dafbe9c a9bb1ec 67e24f8 a9bb1ec 67e24f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
import os
import httpx
import json
import time
import asyncio
import secrets
from fastapi import FastAPI, HTTPException, Security, Depends, status
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
from fastapi.responses import StreamingResponse
from pydantic import BaseModel, Field
from typing import List, Dict, Any, Optional, Union, Literal
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
REPLICATE_API_TOKEN = os.getenv("REPLICATE_API_TOKEN")
SERVER_API_KEY = os.getenv("SERVER_API_KEY") # <-- Key for server auth
if not REPLICATE_API_TOKEN:
raise ValueError("REPLICATE_API_TOKEN environment variable not set.")
if not SERVER_API_KEY:
raise ValueError("SERVER_API_KEY environment variable not set. This is required to protect your server.")
# FastAPI Init
app = FastAPI(title="Replicate to OpenAI Compatibility Layer", version="9.2.8 (Raw Output Fix)")
# --- Authentication ---
security = HTTPBearer()
async def verify_api_key(credentials: HTTPAuthorizationCredentials = Security(security)):
"""
Verify the API key provided in the Authorization header.
"""
if credentials.scheme != "Bearer" or credentials.credentials != SERVER_API_KEY:
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Invalid or missing API key",
headers={"WWW-Authenticate": "Bearer"},
)
return True
# --- Pydantic Models ---
class ModelCard(BaseModel):
id: str
object: str = "model"
created: int = Field(default_factory=lambda: int(time.time()))
owned_by: str = "replicate"
class ModelList(BaseModel):
object: str = "list"
data: List[ModelCard] = []
class ChatMessage(BaseModel):
role: Literal["system", "user", "assistant", "tool"]
content: Union[str, List[Dict[str, Any]]]
name: Optional[str] = None
tool_calls: Optional[List[Any]] = None
class FunctionDefinition(BaseModel):
name: str
description: Optional[str] = None
parameters: Optional[Dict[str, Any]] = None
class ToolDefinition(BaseModel):
type: Literal["function"]
function: FunctionDefinition
class FunctionCall(BaseModel):
name: str
arguments: str
class ToolCall(BaseModel):
id: str
type: Literal["function"] = "function"
function: FunctionCall
class ChatCompletionRequest(BaseModel):
model: str
messages: List[ChatMessage]
temperature: Optional[float] = 0.7
top_p: Optional[float] = 1.0
max_tokens: Optional[int] = None
stream: Optional[bool] = False
stop: Optional[Union[str, List[str]]] = None
tools: Optional[List[ToolDefinition]] = None
tool_choice: Optional[Union[str, Dict[str, Any]]] = None
functions: Optional[List[FunctionDefinition]] = None
function_call: Optional[Union[str, Dict[str, str]]] = None
class Choice(BaseModel):
index: int
message: ChatMessage
finish_reason: Optional[str] = None
class Usage(BaseModel):
prompt_tokens: int
completion_tokens: int
total_tokens: int
inference_time: Optional[float] = None
class ChatCompletion(BaseModel):
id: str
object: str = "chat.completion"
created: int
model: str
choices: List[Choice]
usage: Usage
class DeltaMessage(BaseModel):
role: Optional[str] = None
content: Optional[str] = None
tool_calls: Optional[List[ToolCall]] = None
class ChoiceDelta(BaseModel):
index: int
delta: DeltaMessage
finish_reason: Optional[str] = None
class ChatCompletionChunk(BaseModel):
id: str
object: str = "chat.completion.chunk"
created: int
model: str
choices: List[ChoiceDelta]
usage: Optional[Usage] = None
# --- Supported Models ---
SUPPORTED_MODELS = {
"llama3-8b-instruct": "meta/meta-llama-3-8b-instruct",
"claude-4.5-haiku": "anthropic/claude-4.5-haiku",
"claude-4.5-sonnet": "anthropic/claude-4.5-sonnet",
"llava-13b": "yorickvp/llava-13b:e272157381e2a3bf12df3a8edd1f38d1dbd736bbb7437277c8b34175f8fce358"
}
# --- Core Logic ---
def generate_request_id() -> str:
"""Generates a unique request ID in the user-specified format."""
return f"gen-{int(time.time())}-{secrets.token_hex(8)}"
def format_messages_for_replicate(messages: List[ChatMessage], functions: Optional[List[FunctionDefinition]] = None) -> Dict[str, Any]:
prompt_parts = []
system_prompt = None
image_input = None
if functions:
functions_text = "You have access to the following tools. Use them if required to answer the user's question.\n\n"
for func in functions:
functions_text += f"- Function: {func.name}\n"
if func.description: functions_text += f" Description: {func.description}\n"
if func.parameters: functions_text += f" Parameters: {json.dumps(func.parameters)}\n"
prompt_parts.append(functions_text)
for msg in messages:
if msg.role == "system":
system_prompt = str(msg.content)
elif msg.role == "assistant":
if msg.tool_calls:
tool_calls_text = "\nTool calls:\n"
for tool_call in msg.tool_calls:
tool_calls_text += f"- {tool_call.function.name}({tool_call.function.arguments})\n"
prompt_parts.append(f"Assistant: {tool_calls_text}")
else:
prompt_parts.append(f"Assistant: {msg.content}")
elif msg.role == "tool":
prompt_parts.append(f"Tool Response: {msg.content}")
elif msg.role == "user":
user_text_content = ""
if isinstance(msg.content, list):
for item in msg.content:
if item.get("type") == "text":
user_text_content += item.get("text", "")
elif item.get("type") == "image_url":
image_url_data = item.get("image_url", {})
image_input = image_url_data.get("url")
else:
user_text_content = str(msg.content)
prompt_parts.append(f"User: {user_text_content}")
prompt_parts.append("Assistant:") # Let the model generate the space after this
return {
"prompt": "\n\n".join(prompt_parts),
"system_prompt": system_prompt,
"image": image_input
}
def parse_function_call(content: str) -> Optional[Dict[str, Any]]:
try:
if "function_call" in content or ("name" in content and "arguments" in content):
start = content.find("{")
end = content.rfind("}") + 1
if start != -1 and end > start:
json_str = content[start:end]
parsed = json.loads(json_str)
if "name" in parsed and "arguments" in parsed:
return parsed
except (json.JSONDecodeError, Exception):
pass
return None
async def stream_replicate_response(replicate_model_id: str, input_payload: dict, request_id: str):
url = f"https://api.replicate.com/v1/models/{replicate_model_id}/predictions"
headers = {"Authorization": f"Bearer {REPLICATE_API_TOKEN}", "Content-Type": "application/json"}
start_time = time.time()
prompt_tokens = len(input_payload.get("prompt", "")) // 4
completion_tokens = 0
async with httpx.AsyncClient(timeout=300.0) as client:
try:
response = await client.post(url, headers=headers, json={"input": input_payload, "stream": True})
response.raise_for_status()
prediction = response.json()
stream_url = prediction.get("urls", {}).get("stream")
if not stream_url:
yield f"data: {json.dumps({'error': {'message': 'Model did not return a stream URL.'}})}\n\n"
return
except httpx.HTTPStatusError as e:
error_details = e.response.text
try: error_details = e.response.json().get("detail", error_details)
except json.JSONDecodeError: pass
yield f"data: {json.dumps({'error': {'message': f'Upstream Error: {error_details}', 'type': 'replicate_error'}})}\n\n"
return
try:
async with client.stream("GET", stream_url, headers={"Accept": "text/event-stream"}, timeout=None) as sse:
current_event = None
accumulated_content = ""
async for line in sse.aiter_lines():
if not line: continue
if line.startswith("event:"):
current_event = line[len("event:"):].strip()
elif line.startswith("data:") and current_event == "output":
raw_data = line[5:].strip()
if not raw_data: continue
try:
content_token = json.loads(raw_data)
except (json.JSONDecodeError, TypeError):
content_token = raw_data
# ### THIS IS THE FIX ###
# There is NO lstrip() or strip() here.
# This sends the raw, unmodified token from Replicate.
# If the log shows "HowcanI", it's because the model
# sent "How", "can", "I" as separate tokens.
accumulated_content += content_token
completion_tokens += 1
function_call = parse_function_call(accumulated_content)
if function_call:
tool_call = ToolCall(id=f"call_{int(time.time())}", function=FunctionCall(name=function_call["name"], arguments=function_call["arguments"]))
chunk = ChatCompletionChunk(id=request_id, created=int(time.time()), model=replicate_model_id, choices=[ChoiceDelta(index=0, delta=DeltaMessage(tool_calls=[tool_call]), finish_reason=None)])
yield f"data: {chunk.json()}\n\n"
else:
if content_token:
chunk = ChatCompletionChunk(id=request_id, created=int(time.time()), model=replicate_model_id, choices=[ChoiceDelta(index=0, delta=DeltaMessage(content=content_token), finish_reason=None)])
yield f"data: {chunk.json()}\n\n"
elif current_event == "done":
end_time = time.time()
usage = Usage(prompt_tokens=prompt_tokens, completion_tokens=completion_tokens, total_tokens=prompt_tokens + completion_tokens, inference_time=round(end_time - start_time, 3))
usage_chunk = ChatCompletionChunk(id=request_id, created=int(time.time()), model=replicate_model_id, choices=[ChoiceDelta(index=0, delta=DeltaMessage(), finish_reason="stop")], usage=usage)
yield f"data: {usage_chunk.json()}\n\n"
break
except httpx.ReadTimeout:
yield f"data: {json.dumps({'error': {'message': 'Stream timed out.', 'type': 'timeout_error'}})}\n\n"
return
yield "data: [DONE]\n\n"
# --- Endpoints ---
@app.get("/v1/models", dependencies=[Depends(verify_api_key)])
async def list_models():
"""
Protected endpoint to list available models.
"""
return ModelList(data=[ModelCard(id=k) for k in SUPPORTED_MODELS.keys()])
@app.post("/v1/chat/completions", dependencies=[Depends(verify_api_key)])
async def create_chat_completion(request: ChatCompletionRequest):
"""
Protected endpoint to create a chat completion.
"""
if request.model not in SUPPORTED_MODELS:
raise HTTPException(status_code=404, detail=f"Model not found. Available models: {list(SUPPORTED_MODELS.keys())}")
replicate_model_id = SUPPORTED_MODELS[request.model]
formatted = format_messages_for_replicate(request.messages, request.functions)
replicate_input = {
"prompt": formatted["prompt"],
"temperature": request.temperature or 0.7,
"top_p": request.top_p or 1.0
}
if request.max_tokens is not None:
replicate_input["max_new_tokens"] = request.max_tokens
if formatted["system_prompt"]: replicate_input["system_prompt"] = formatted["system_prompt"]
if formatted["image"]: replicate_input["image"] = formatted["image"]
request_id = generate_request_id()
if request.stream:
return StreamingResponse(
stream_replicate_response(replicate_model_id, replicate_input, request_id),
media_type="text/event-stream"
)
# Non-streaming response
url = f"https://api.replicate.com/v1/models/{replicate_model_id}/predictions"
headers = {"Authorization": f"Bearer {REPLICATE_API_TOKEN}", "Content-Type": "application/json"}
start_time = time.time()
async with httpx.AsyncClient() as client:
try:
resp = await client.post(url, headers=headers, json={"input": replicate_input}, timeout=300.0)
resp.raise_for_status()
pred = resp.json()
# Handle the 'output' field which could be a list, string, or null
raw_output = pred.get("output")
if isinstance(raw_output, list):
output = "".join(raw_output) # Expected case: list of strings
elif isinstance(raw_output, str):
output = raw_output # Handle if it's just a single string
else:
output = ""
# ### THIS IS THE FIX ###
# Removed output.strip() to return the raw response.
# This fixes the bug where a single space (" ") response
# would become "" and show content: "" in the JSON.
end_time = time.time()
prompt_tokens = len(replicate_input.get("prompt", "")) // 4
completion_tokens = len(output) // 4
tool_calls = None
finish_reason = "stop"
message_content = output
function_call = parse_function_call(output)
if function_call:
tool_calls = [ToolCall(id=f"call_{int(time.time())}", function=FunctionCall(name=function_call["name"], arguments=function_call["arguments"]))]
finish_reason = "tool_calls"
message_content = None # OpenAI standard: content is null when tool_calls are present
return ChatCompletion(
id=request_id,
created=int(time.time()),
model=request.model,
choices=[Choice(
index=0,
message=ChatMessage(role="assistant", content=message_content, tool_calls=tool_calls),
finish_reason=finish_reason
)],
usage=Usage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
inference_time=round(end_time - start_time, 3)
)
)
except httpx.HTTPStatusError as e:
raise HTTPException(status_code=e.response.status_code, detail=f"Error from Replicate API: {e.response.text}")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Internal error: {str(e)}")
@app.get("/")
async def root():
"""
Root endpoint for health checks. Does not require authentication.
"""
return {"message": "Replicate to OpenAI Compatibility Layer API", "version": "9.2.8"}
@app.middleware("http")
async def add_performance_headers(request, call_next):
start_time = time.time()
response = await call_next(request)
process_time = time.time() - start_time
response.headers["X-Process-Time"] = str(round(process_time, 3))
response.headers["X-API-Version"] = "9.2.8"
return response
|