File size: 26,097 Bytes
efe9b1b 26841b5 c3211a4 d2502a6 26841b5 9f4df99 efe9b1b 33839bc f7c6a9c efe9b1b fd66920 f7c6a9c 26841b5 9f4df99 33839bc c3211a4 efe9b1b b3a57d5 f7c6a9c b3a57d5 f7c6a9c d2502a6 efe9b1b f7c6a9c d2502a6 f7c6a9c d2502a6 efe9b1b d2502a6 fd66920 d2502a6 fd66920 d2502a6 fd66920 f7c6a9c d2502a6 f7c6a9c d2502a6 f7c6a9c fd66920 d2502a6 fd66920 d2502a6 fd66920 d2502a6 fd66920 d2502a6 fd66920 d2502a6 fd66920 d2502a6 fd66920 d2502a6 fd66920 f7c6a9c efe9b1b c3211a4 efe9b1b b3a57d5 efe9b1b f7c6a9c efe9b1b f7c6a9c 6a16de4 f7c6a9c c3211a4 f7c6a9c d2502a6 fd66920 b3a57d5 fd66920 d2502a6 f7c6a9c fd66920 b3a57d5 fd66920 b3a57d5 fd66920 b3a57d5 fd66920 c3211a4 f7c6a9c 6a16de4 04ca462 c3211a4 d2502a6 04ca462 33839bc d2502a6 fd66920 b3a57d5 33839bc d2502a6 fd66920 b3a57d5 c3211a4 d2502a6 fd66920 d2502a6 fd66920 d2502a6 fd66920 b3a57d5 d2502a6 b3a57d5 04ca462 fd66920 d2502a6 b3a57d5 d2502a6 b3a57d5 d2502a6 fd66920 b3a57d5 d2502a6 33839bc c3211a4 d2502a6 c3211a4 d2502a6 b3a57d5 c3211a4 fd66920 b3a57d5 fd66920 b3a57d5 d2502a6 b3a57d5 04ca462 b3a57d5 04ca462 c3211a4 04ca462 6a16de4 fd66920 6a16de4 f7c6a9c c3211a4 fd66920 f7c6a9c 33839bc f7c6a9c fd66920 b3a57d5 33839bc c3211a4 b3a57d5 fd66920 b3a57d5 d2502a6 fd66920 d2502a6 c3211a4 fd66920 b3a57d5 fd66920 b3a57d5 fd66920 b3a57d5 fd66920 b3a57d5 fd66920 b3a57d5 fd66920 d2502a6 c3211a4 b3a57d5 fd66920 b3a57d5 fd66920 b3a57d5 c3211a4 b3a57d5 c3211a4 b3a57d5 c3211a4 b3a57d5 c3211a4 d2502a6 fd66920 b3a57d5 fd66920 b3a57d5 fd66920 b3a57d5 fd66920 b3a57d5 fd66920 d2502a6 b3a57d5 c3211a4 b3a57d5 d2502a6 fd66920 b3a57d5 fd66920 b3a57d5 fd66920 b3a57d5 fd66920 d2502a6 efe9b1b c3211a4 f7c6a9c 6a16de4 c3211a4 f7c6a9c fd66920 f7c6a9c fd66920 c3211a4 fd66920 f7c6a9c fd66920 f7c6a9c fd66920 f7c6a9c fd66920 f7c6a9c b3a57d5 f7c6a9c 6a16de4 efe9b1b 26841b5 990992c 9f4df99 efe9b1b b3a57d5 990992c 26841b5 b3a57d5 990992c efe9b1b b3a57d5 26841b5 990992c efe9b1b 26841b5 b3a57d5 efe9b1b b3a57d5 efe9b1b b3a57d5 efe9b1b 990992c b3a57d5 990992c 9f4df99 efe9b1b f7c6a9c 6a16de4 33839bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 |
#!/usr/bin/env python3
"""
cv_processing.py · MAXIMUM QUALITY VERSION with enhanced SAM2Handler integration
Updated to work with enhanced SAM2Handler that has full-body detection strategies
Now includes maximum quality mask cleaning and aggressive post-processing
All public functions in this module expect RGB images (H,W,3) unless stated otherwise.
CoreVideoProcessor already converts BGR→RGB before calling into this module.
"""
from __future__ import annotations
import os
import logging
from pathlib import Path
from typing import Any, Dict, Optional, Tuple, Callable
import cv2
import numpy as np
logger = logging.getLogger(__name__)
# ----------------------------------------------------------------------------
# Environment variable helpers
# ----------------------------------------------------------------------------
def _use_sam2_enabled() -> bool:
"""Check if SAM2 should be used based on environment variable"""
val = os.getenv("USE_SAM2", "1")
return val.lower() in ("1", "true", "yes", "on")
def _use_matanyone_enabled() -> bool:
"""Check if MatAnyone should be used based on environment variable"""
val = os.getenv("USE_MATANYONE", "1")
return val.lower() in ("1", "true", "yes", "on")
def _use_max_quality_enabled() -> bool:
"""Check if maximum quality processing should be used"""
val = os.getenv("BFX_QUALITY", "max")
return val.lower() == "max"
# ----------------------------------------------------------------------------
# Background presets
# ----------------------------------------------------------------------------
PROFESSIONAL_BACKGROUNDS_LOCAL: Dict[str, Dict[str, Any]] = {
"office": {"color": (240, 248, 255), "gradient": True},
"studio": {"color": (32, 32, 32), "gradient": False},
"nature": {"color": (34, 139, 34), "gradient": True},
"abstract": {"color": (75, 0, 130), "gradient": True},
"white": {"color": (255, 255, 255), "gradient": False},
"black": {"color": (0, 0, 0), "gradient": False},
}
PROFESSIONAL_BACKGROUNDS = PROFESSIONAL_BACKGROUNDS_LOCAL
# ----------------------------------------------------------------------------
# Helpers (RGB-safe)
# ----------------------------------------------------------------------------
def _ensure_rgb(img: np.ndarray) -> np.ndarray:
"""
Identity for RGB HWC images. If channels-first, convert to HWC.
DOES NOT perform BGR↔RGB swaps (the caller is responsible for color space).
"""
if img is None:
return img
x = np.asarray(img)
if x.ndim == 3 and x.shape[-1] in (3, 4):
return x[..., :3]
if x.ndim == 3 and x.shape[0] in (1, 3, 4) and x.shape[-1] not in (1, 3, 4):
return np.transpose(x, (1, 2, 0))[..., :3]
return x
def _ensure_rgb01(frame_rgb: np.ndarray) -> np.ndarray:
"""
Convert RGB uint8/float to RGB float32 in [0,1], HWC.
No channel swaps are performed.
"""
if frame_rgb is None:
raise ValueError("frame_rgb is None")
x = _ensure_rgb(frame_rgb)
if x.dtype == np.uint8:
return (x.astype(np.float32) / 255.0).copy()
if np.issubdtype(x.dtype, np.floating):
return np.clip(x.astype(np.float32), 0.0, 1.0).copy()
# other integer types
x = np.clip(x, 0, 255).astype(np.uint8)
return (x.astype(np.float32) / 255.0).copy()
def _to_mask01(m: np.ndarray) -> np.ndarray:
if m is None:
return None
if m.ndim == 3 and m.shape[2] in (1, 3, 4):
m = m[..., 0]
m = np.asarray(m)
if m.dtype == np.uint8:
m = m.astype(np.float32) / 255.0
elif m.dtype != np.float32:
m = m.astype(np.float32)
return np.clip(m, 0.0, 1.0)
def _mask_to_2d(mask: np.ndarray) -> np.ndarray:
"""
Reduce any mask to 2-D float32 [H,W], contiguous, in [0,1].
Handles HWC/CHW/B1HW/1HW/HW, etc.
"""
m = np.asarray(mask)
# CHW with single channel
if m.ndim == 3 and m.shape[0] == 1 and (m.shape[1] > 1 and m.shape[2] > 1):
m = m[0]
# HWC with single channel
if m.ndim == 3 and m.shape[-1] == 1:
m = m[..., 0]
# generic 3D -> take first channel
if m.ndim == 3:
m = m[..., 0] if m.shape[-1] in (1, 3, 4) else m[0]
m = np.squeeze(m)
if m.ndim != 2:
# fall back to neutral 0.5 mask
h = int(m.shape[-2]) if m.ndim >= 2 else 512
w = int(m.shape[-1]) if m.ndim >= 2 else 512
logger.warning(f"_mask_to_2d: unexpected shape {mask.shape}, creating neutral mask.")
m = np.full((h, w), 0.5, dtype=np.float32)
if m.dtype == np.uint8:
m = m.astype(np.float32) / 255.0
elif m.dtype != np.float32:
m = m.astype(np.float32)
return np.ascontiguousarray(np.clip(m, 0.0, 1.0))
def _feather(mask01: np.ndarray, k: int = 2) -> np.ndarray:
if mask01.ndim == 3:
mask01 = mask01[..., 0]
k = max(1, int(k) * 2 + 1)
m = cv2.GaussianBlur((mask01 * 255.0).astype(np.uint8), (k, k), 0)
return (m.astype(np.float32) / 255.0)
def _vertical_gradient(top: Tuple[int,int,int], bottom: Tuple[int,int,int], width: int, height: int) -> np.ndarray:
bg = np.zeros((height, width, 3), dtype=np.uint8)
for y in range(height):
t = y / max(1, height - 1)
r = int(top[0] * (1 - t) + bottom[0] * t)
g = int(top[1] * (1 - t) + bottom[1] * t)
b = int(top[2] * (1 - t) + bottom[2] * t)
bg[y, :] = (r, g, b)
return bg
# ----------------------------------------------------------------------------
# Maximum Quality Mask Cleaning (integrated from TwoStageProcessor)
# ----------------------------------------------------------------------------
def _maximum_quality_mask_cleaning(mask: np.ndarray) -> np.ndarray:
"""Maximum quality mask cleaning and refinement - same as TwoStageProcessor."""
try:
# Ensure uint8 format
if mask.max() <= 1.0:
mask_uint8 = (mask * 255).astype(np.uint8)
else:
mask_uint8 = mask.astype(np.uint8)
# Step 1: Fill small holes aggressively
kernel_fill = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (9, 9))
mask_filled = cv2.morphologyEx(mask_uint8, cv2.MORPH_CLOSE, kernel_fill)
# Step 2: Connect nearby regions
kernel_connect = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (7, 7))
mask_connected = cv2.morphologyEx(mask_filled, cv2.MORPH_CLOSE, kernel_connect)
# Step 3: Smooth boundaries heavily
mask_smooth1 = cv2.GaussianBlur(mask_connected, (7, 7), 2.0)
# Step 4: Re-threshold to crisp edges
_, mask_thresh = cv2.threshold(mask_smooth1, 127, 255, cv2.THRESH_BINARY)
# Step 5: Final edge smoothing
mask_final = cv2.GaussianBlur(mask_thresh, (5, 5), 1.0)
# Step 6: Dilate slightly to ensure full coverage
kernel_dilate = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
mask_dilated = cv2.dilate(mask_final, kernel_dilate, iterations=1)
logger.info("Maximum quality mask cleaning applied successfully")
return (mask_dilated.astype(np.float32) / 255.0)
except Exception as e:
logger.warning(f"Maximum quality mask cleaning failed: {e}")
return mask
# ----------------------------------------------------------------------------
# Background creation
# ----------------------------------------------------------------------------
def create_professional_background(key_or_cfg: Any, width: int, height: int) -> np.ndarray:
if isinstance(key_or_cfg, str):
cfg = PROFESSIONAL_BACKGROUNDS_LOCAL.get(key_or_cfg, PROFESSIONAL_BACKGROUNDS_LOCAL["office"])
elif isinstance(key_or_cfg, dict):
cfg = key_or_cfg
else:
cfg = PROFESSIONAL_BACKGROUNDS_LOCAL["office"]
color = tuple(int(x) for x in cfg.get("color", (255, 255, 255)))
use_grad = bool(cfg.get("gradient", False))
if not use_grad:
return np.full((height, width, 3), color, dtype=np.uint8)
dark = (int(color[0]*0.7), int(color[1]*0.7), int(color[2]*0.7))
return _vertical_gradient(dark, color, width, height)
# ----------------------------------------------------------------------------
# Improved Segmentation (expects RGB input) - ENHANCED FOR SAM2Handler
# ----------------------------------------------------------------------------
def _simple_person_segmentation(frame_rgb: np.ndarray) -> np.ndarray:
"""Basic fallback segmentation using color detection on RGB frames."""
h, w = frame_rgb.shape[:2]
hsv = cv2.cvtColor(frame_rgb, cv2.COLOR_RGB2HSV)
lower_skin = np.array([0, 20, 70], dtype=np.uint8)
upper_skin = np.array([20, 255, 255], dtype=np.uint8)
skin_mask = cv2.inRange(hsv, lower_skin, upper_skin)
# detect greenscreen-ish
lower_green = np.array([40, 40, 40], dtype=np.uint8)
upper_green = np.array([80, 255, 255], dtype=np.uint8)
green_mask = cv2.inRange(hsv, lower_green, upper_green)
person_mask = cv2.bitwise_not(green_mask)
person_mask = cv2.bitwise_or(person_mask, skin_mask)
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
person_mask = cv2.morphologyEx(person_mask, cv2.MORPH_CLOSE, kernel, iterations=2)
person_mask = cv2.morphologyEx(person_mask, cv2.MORPH_OPEN, kernel, iterations=1)
contours, _ = cv2.findContours(person_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if contours:
largest_contour = max(contours, key=cv2.contourArea)
person_mask = np.zeros_like(person_mask)
cv2.drawContours(person_mask, [largest_contour], -1, 255, -1)
mask_result = (person_mask.astype(np.float32) / 255.0)
# Apply maximum quality cleaning if enabled
if _use_max_quality_enabled():
mask_result = _maximum_quality_mask_cleaning(mask_result)
logger.info("Applied maximum quality cleaning to fallback segmentation")
return mask_result
def segment_person_hq(
frame: np.ndarray,
predictor: Optional[Any] = None,
fallback_enabled: bool = True,
use_sam2: Optional[bool] = None,
**_compat_kwargs,
) -> np.ndarray:
"""
High-quality person segmentation with ENHANCED SAM2Handler integration.
Now uses enhanced SAM2Handler.create_mask() for full-body detection.
Expects RGB frame (H,W,3), uint8 or float in [0,1].
"""
# Override with environment variable if not explicitly set
if use_sam2 is None:
use_sam2 = _use_sam2_enabled()
frame_rgb = _ensure_rgb(frame)
h, w = frame_rgb.shape[:2]
if use_sam2 is False:
logger.info("SAM2 disabled by environment variable, using fallback segmentation")
return _simple_person_segmentation(frame_rgb)
if predictor is not None:
try:
# ENHANCED: Check if this is the new SAM2Handler with create_mask method
if hasattr(predictor, 'create_mask'):
logger.info("Using ENHANCED SAM2Handler.create_mask() with full-body detection")
# SAM2Handler expects RGB uint8
if frame_rgb.dtype != np.uint8:
rgb_u8 = np.clip(frame_rgb * (255.0 if frame_rgb.dtype != np.uint8 else 1.0), 0, 255).astype(np.uint8) \
if np.issubdtype(frame_rgb.dtype, np.floating) else frame_rgb.astype(np.uint8)
else:
rgb_u8 = frame_rgb
# Use enhanced SAM2Handler with full-body detection strategies
mask = predictor.create_mask(rgb_u8)
if mask is not None:
# Convert to float format
mask_float = _to_mask01(mask)
logger.info(f"Enhanced SAM2Handler mask stats: shape={mask_float.shape}, min={mask_float.min():.3f}, max={mask_float.max():.3f}, mean={mask_float.mean():.3f}")
if float(mask_float.max()) > 0.1:
# Apply additional maximum quality cleaning if enabled
if _use_max_quality_enabled():
mask_float = _maximum_quality_mask_cleaning(mask_float)
logger.info("Applied additional maximum quality cleaning to enhanced SAM2 result")
return np.ascontiguousarray(mask_float)
else:
logger.warning("Enhanced SAM2Handler mask too weak, using fallback")
else:
logger.warning("Enhanced SAM2Handler returned None mask")
# FALLBACK: Basic SAM2 predictor handling (legacy compatibility)
elif hasattr(predictor, "set_image") and hasattr(predictor, "predict"):
logger.info("Using legacy SAM2 predictor interface")
# Predictor adapter expects RGB uint8; convert if needed
if frame_rgb.dtype != np.uint8:
rgb_u8 = np.clip(frame_rgb * (255.0 if frame_rgb.dtype != np.uint8 else 1.0), 0, 255).astype(np.uint8) \
if np.issubdtype(frame_rgb.dtype, np.floating) else frame_rgb.astype(np.uint8)
else:
rgb_u8 = frame_rgb
predictor.set_image(rgb_u8)
# Center + a couple of body-biased prompts
points = np.array([
[w // 2, h // 2],
[w // 2, h // 4],
[w // 2, h // 2 + h // 8],
], dtype=np.float32)
labels = np.array([1, 1, 1], dtype=np.int32)
result = predictor.predict(
point_coords=points,
point_labels=labels,
multimask_output=True
)
# normalize outputs
if isinstance(result, dict):
masks = result.get("masks", None)
scores = result.get("scores", None)
elif isinstance(result, (tuple, list)) and len(result) >= 2:
masks, scores = result[0], result[1]
else:
masks, scores = result, None
if masks is not None:
masks = np.asarray(masks)
if masks.ndim == 2:
mask = masks
elif masks.ndim == 3 and masks.shape[0] > 0:
if scores is not None:
best_idx = int(np.argmax(np.asarray(scores)))
mask = masks[best_idx]
else:
mask = masks[0]
elif masks.ndim == 4 and masks.shape[1] == 1:
# (N,1,H,W)
if scores is not None:
best_idx = int(np.argmax(np.asarray(scores)))
mask = masks[best_idx, 0]
else:
mask = masks[0, 0]
else:
logger.warning(f"Unexpected mask shape from SAM2: {masks.shape}")
mask = None
if mask is not None:
mask = _to_mask01(mask)
# Add debug logging
logger.info(f"Legacy SAM2 mask stats: shape={mask.shape}, min={mask.min():.3f}, max={mask.max():.3f}, mean={mask.mean():.3f}")
if float(mask.max()) > 0.1:
# Apply maximum quality cleaning if enabled
if _use_max_quality_enabled():
mask = _maximum_quality_mask_cleaning(mask)
logger.info("Applied maximum quality cleaning to legacy SAM2 result")
return np.ascontiguousarray(mask)
else:
logger.warning("Legacy SAM2 mask too weak, using fallback")
else:
logger.warning("Legacy SAM2 returned no masks")
else:
logger.warning("Predictor doesn't have expected SAM2 interface")
except Exception as e:
logger.warning(f"SAM2 segmentation error: {e}")
if fallback_enabled:
logger.debug("Using fallback segmentation")
return _simple_person_segmentation(frame_rgb)
else:
return np.ones((h, w), dtype=np.float32)
segment_person_hq_original = segment_person_hq
# ----------------------------------------------------------------------------
# MatAnyone Refinement (Stateful-capable) - ENHANCED WITH MAX QUALITY
# ----------------------------------------------------------------------------
def refine_mask_hq(
frame: np.ndarray,
mask: np.ndarray,
matanyone: Optional[Callable] = None,
*,
frame_idx: Optional[int] = None,
fallback_enabled: bool = True,
use_matanyone: Optional[bool] = None,
**_compat_kwargs,
) -> np.ndarray:
"""
Refine mask with MatAnyone + maximum quality post-processing.
Modes:
• Stateful (preferred): provide `frame_idx`. On frame_idx==0, the session encodes with the mask.
On subsequent frames, the session propagates without a mask.
• Backward-compat (stateless): if `frame_idx` is None, we try callable/step/process with (frame, mask)
like before.
Returns:
2-D float32 alpha [H,W], contiguous, in [0,1] (OpenCV-safe).
"""
# Override with environment variable if not explicitly set
if use_matanyone is None:
use_matanyone = _use_matanyone_enabled()
mask01 = _to_mask01(mask)
if use_matanyone is False:
logger.info("MatAnyone disabled by environment variable, returning unrefined mask")
# Still apply maximum quality cleaning if enabled
if _use_max_quality_enabled():
mask01 = _maximum_quality_mask_cleaning(mask01)
logger.info("Applied maximum quality cleaning to unrefined mask")
return mask01
if matanyone is not None and callable(matanyone):
try:
rgb01 = _ensure_rgb01(frame) # RGB float32 in [0,1]
# Stateful path (preferred)
if frame_idx is not None:
if frame_idx == 0:
refined = matanyone(rgb01, mask01) # encode + first-frame predict inside
else:
refined = matanyone(rgb01) # propagate without mask
refined = _mask_to_2d(refined)
if float(refined.max()) > 0.1:
result = _postprocess_mask_max_quality(refined)
return result
logger.warning("MatAnyone stateful refinement produced empty/weak mask; falling back.")
# Backward-compat (stateless) path
refined = None
# Method 1: Direct callable with (frame, mask)
try:
refined = matanyone(rgb01, mask01)
refined = _mask_to_2d(refined)
except Exception as e:
logger.debug(f"MatAnyone callable failed: {e}")
# Method 2: step(image, mask)
if refined is None and hasattr(matanyone, 'step'):
try:
refined = matanyone.step(rgb01, mask01)
refined = _mask_to_2d(refined)
except Exception as e:
logger.debug(f"MatAnyone step failed: {e}")
# Method 3: process(image, mask)
if refined is None and hasattr(matanyone, 'process'):
try:
refined = matanyone.process(rgb01, mask01)
refined = _mask_to_2d(refined)
except Exception as e:
logger.debug(f"MatAnyone process failed: {e}")
if refined is not None and float(refined.max()) > 0.1:
result = _postprocess_mask_max_quality(refined)
return result
else:
logger.warning("MatAnyone refinement failed or produced empty mask")
except Exception as e:
logger.warning(f"MatAnyone error: {e}")
# Fallback refinement
if fallback_enabled:
return _fallback_refine_max_quality(mask01)
else:
# Still apply maximum quality cleaning if enabled
if _use_max_quality_enabled():
mask01 = _maximum_quality_mask_cleaning(mask01)
logger.info("Applied maximum quality cleaning to fallback mask")
return mask01
def _postprocess_mask_max_quality(mask01: np.ndarray) -> np.ndarray:
"""Post-process mask with maximum quality cleaning"""
if _use_max_quality_enabled():
# Use the aggressive maximum quality cleaning
result = _maximum_quality_mask_cleaning(mask01)
logger.info("Applied maximum quality post-processing to MatAnyone result")
return result
else:
# Use standard post-processing
return _postprocess_mask(mask01)
def _postprocess_mask(mask01: np.ndarray) -> np.ndarray:
"""Standard post-process mask to clean edges and remove artifacts"""
mask_uint8 = (np.clip(mask01, 0, 1) * 255).astype(np.uint8)
kernel_close = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
mask_uint8 = cv2.morphologyEx(mask_uint8, cv2.MORPH_CLOSE, kernel_close)
mask_uint8 = cv2.GaussianBlur(mask_uint8, (3, 3), 0)
_, mask_uint8 = cv2.threshold(mask_uint8, 127, 255, cv2.THRESH_BINARY)
mask_uint8 = cv2.GaussianBlur(mask_uint8, (5, 5), 1)
out = mask_uint8.astype(np.float32) / 255.0
return np.ascontiguousarray(out)
def _fallback_refine_max_quality(mask01: np.ndarray) -> np.ndarray:
"""Fallback refinement with maximum quality option"""
if _use_max_quality_enabled():
# Use aggressive maximum quality cleaning
result = _maximum_quality_mask_cleaning(mask01)
logger.info("Applied maximum quality cleaning to fallback refinement")
return result
else:
# Use standard fallback refinement
return _fallback_refine(mask01)
def _fallback_refine(mask01: np.ndarray) -> np.ndarray:
"""Simple fallback refinement"""
mask_uint8 = (np.clip(mask01, 0, 1) * 255).astype(np.uint8)
mask_uint8 = cv2.bilateralFilter(mask_uint8, 9, 75, 75)
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
mask_uint8 = cv2.morphologyEx(mask_uint8, cv2.MORPH_CLOSE, kernel)
mask_uint8 = cv2.morphologyEx(mask_uint8, cv2.MORPH_OPEN, kernel)
mask_uint8 = cv2.GaussianBlur(mask_uint8, (5, 5), 1)
out = mask_uint8.astype(np.float32) / 255.0
return np.ascontiguousarray(out)
# ----------------------------------------------------------------------------
# Compositing (expects RGB inputs) - ENHANCED WITH MAX QUALITY
# ----------------------------------------------------------------------------
def replace_background_hq(
frame: np.ndarray,
mask01: np.ndarray,
background: np.ndarray,
fallback_enabled: bool = True,
**_compat,
) -> np.ndarray:
"""High-quality background replacement with alpha blending (RGB in/out) - enhanced with max quality."""
try:
H, W = frame.shape[:2]
if background.shape[:2] != (H, W):
background = cv2.resize(background, (W, H), interpolation=cv2.INTER_LANCZOS4)
m = _mask_to_2d(_to_mask01(mask01))
# Apply maximum quality cleaning to mask before compositing
if _use_max_quality_enabled():
m = _maximum_quality_mask_cleaning(m)
logger.debug("Applied maximum quality cleaning to compositing mask")
# Enhanced feathering for maximum quality
feather_strength = 3 if _use_max_quality_enabled() else 1
m = _feather(m, k=feather_strength)
m3 = np.repeat(m[:, :, None], 3, axis=2)
comp = frame.astype(np.float32) * m3 + background.astype(np.float32) * (1.0 - m3)
return np.clip(comp, 0, 255).astype(np.uint8)
except Exception as e:
if fallback_enabled:
logger.warning(f"Compositing failed ({e}) – returning original frame")
return frame
raise
# ----------------------------------------------------------------------------
# Video validation
# ----------------------------------------------------------------------------
def validate_video_file(video_path: str) -> Tuple[bool, str]:
if not video_path or not Path(video_path).exists():
return False, "Video file not found"
try:
size = Path(video_path).stat().st_size
if size == 0:
return False, "File is empty"
if size > 2 * 1024 * 1024 * 1024:
return False, "File > 2 GB"
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
return False, "Cannot read file"
n_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = cap.get(cv2.CAP_PROP_FPS)
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
cap.release()
if n_frames == 0:
return False, "No frames detected"
if fps <= 0 or fps > 120:
return False, f"Invalid FPS: {fps}"
if w <= 0 or h <= 0:
return False, "Invalid resolution"
if w > 4096 or h > 4096:
return False, f"Resolution {w}×{h} too high"
if (n_frames / fps) > 300:
return False, "Video longer than 5 minutes"
return True, f"OK → {w}×{h}, {fps:.1f} fps, {n_frames/fps:.1f}s"
except Exception as e:
logger.error(f"validate_video_file: {e}")
return False, f"Validation error: {e}"
# ----------------------------------------------------------------------------
# Public symbols
# ----------------------------------------------------------------------------
__all__ = [
"segment_person_hq",
"segment_person_hq_original",
"refine_mask_hq",
"replace_background_hq",
"create_professional_background",
"validate_video_file",
"PROFESSIONAL_BACKGROUNDS",
] |