Spaces:
Running
Running
File size: 16,571 Bytes
e8b46b5 24ad2d2 47f7e99 24ad2d2 704d2a2 1055fe1 704d2a2 1055fe1 704d2a2 47f7e99 704d2a2 47f7e99 704d2a2 47f7e99 704d2a2 47f7e99 704d2a2 47f7e99 704d2a2 47f7e99 704d2a2 f4b6b63 704d2a2 f4b6b63 704d2a2 f4b6b63 704d2a2 47f7e99 704d2a2 47f7e99 704d2a2 47f7e99 704d2a2 47f7e99 704d2a2 47f7e99 704d2a2 7a2fc08 704d2a2 47f7e99 704d2a2 47f7e99 704d2a2 f4b6b63 47f7e99 704d2a2 47f7e99 704d2a2 47f7e99 704d2a2 f4b6b63 47f7e99 f4b6b63 704d2a2 47f7e99 704d2a2 f4b6b63 47f7e99 f4b6b63 47f7e99 704d2a2 47f7e99 704d2a2 47f7e99 704d2a2 47f7e99 704d2a2 47f7e99 704d2a2 47f7e99 704d2a2 47f7e99 704d2a2 47f7e99 704d2a2 47f7e99 704d2a2 47f7e99 704d2a2 47f7e99 704d2a2 47f7e99 704d2a2 47f7e99 704d2a2 47f7e99 704d2a2 47f7e99 704d2a2 47f7e99 704d2a2 47f7e99 704d2a2 47f7e99 704d2a2 47f7e99 704d2a2 47f7e99 704d2a2 47f7e99 e8b46b5 704d2a2 47f7e99 704d2a2 47f7e99 704d2a2 f4b6b63 704d2a2 47f7e99 704d2a2 1055fe1 47f7e99 ab82879 1055fe1 ab82879 47f7e99 ab82879 47f7e99 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 |
#!/usr/bin/env python3
"""
extract_red_text.py - Enhanced version with improved red text detection and master key alignment
"""
from __future__ import annotations
import json
import re
import sys
import logging
from collections import defaultdict
from typing import List, Dict, Optional, Any, Tuple
# attempt to import python-docx (document processing)
try:
from docx import Document
from docx.oxml.ns import qn
from docx.shared import RGBColor
except Exception as e:
raise RuntimeError("python-docx is required. Install with: pip install python-docx") from e
# ------------------------------
# Import master_key configurations
# ------------------------------
try:
import master_key as mk
GLOBAL_SETTINGS = mk.GLOBAL_SETTINGS
EXTRA_HEADER_SYNONYMS = mk.EXTRA_HEADER_SYNONYMS
TABLE_SCHEMAS = getattr(mk, "TABLE_SCHEMAS", {})
except ImportError as e:
logging.error("Failed to import master_key.py: %s", e)
raise RuntimeError("master_key.py is required for configuration") from e
except AttributeError as e:
logging.error("Missing required configuration in master_key.py: %s", e)
raise RuntimeError("master_key.py missing required GLOBAL_SETTINGS or EXTRA_HEADER_SYNONYMS") from e
# ------------------------------
# Logging
# ------------------------------
logging.basicConfig(level=logging.INFO, format="%(asctime)s %(levelname)s: %(message)s")
log = logging.getLogger("extract_red_text")
# ------------------------------
# Normalization & OCR-repair utilities (aligned to GLOBAL_SETTINGS)
# ------------------------------
def _apply_ocr_repair_rules(text: str) -> str:
"""Apply OCR repair rules from GLOBAL_SETTINGS."""
s = text or ""
for pat, repl in GLOBAL_SETTINGS.get("ocr_repair_rules", []):
try:
s = re.sub(pat, repl, s, flags=re.I)
except re.error:
# skip invalid rule
continue
return s
def _normalize_text(text: str) -> str:
"""Normalize text according to GLOBAL_SETTINGS (readable normalized form)."""
s = _apply_ocr_repair_rules(text or "")
norm_cfg = GLOBAL_SETTINGS.get("normalize", {})
if norm_cfg.get("replace_smart_dashes", False):
s = s.replace("–", "-").replace("—", "-")
if norm_cfg.get("lower", False):
s = s.lower()
if norm_cfg.get("strip_punctuation", False):
# keep hyphen, ampersand, parentheses, slash, colon; drop other punctuation
s = re.sub(r"[^\w\s\-\&\(\)\/:]", " ", s)
if norm_cfg.get("collapse_whitespace", False):
s = re.sub(r"\s+", " ", s)
return s.strip()
def _compact_key(text: str) -> str:
"""Create compact key (no non-word chars) for deterministic lookup."""
if text is None:
return ""
normalized = _normalize_text(text)
return re.sub(r"[^\w]", "", normalized)
def map_header_using_extra_synonyms(header_text: str) -> Optional[str]:
"""
Try deterministic mapping using EXTRA_HEADER_SYNONYMS.
Return canonical label if found, else None.
"""
if not header_text:
return None
normalized = _normalize_text(header_text)
compact = _compact_key(header_text)
# try compact key
if compact in EXTRA_HEADER_SYNONYMS:
return EXTRA_HEADER_SYNONYMS[compact]
# try normalized key directly
if normalized in EXTRA_HEADER_SYNONYMS:
return EXTRA_HEADER_SYNONYMS[normalized]
# also try case-insensitive match on keys
for k, v in EXTRA_HEADER_SYNONYMS.items():
if k.lower() == normalized.lower() or k.lower() == compact.lower():
return v
return None
# ------------------------------
# Enhanced red font detection using hf_utils pattern
# ------------------------------
def _run_is_red(run) -> bool:
"""
Enhanced red color detection for docx.run objects.
Uses multiple methods to detect red text robustly.
"""
try:
# Method 1: Check run.font.color.rgb
col = getattr(run.font, "color", None)
if col is not None and getattr(col, "rgb", None):
rgb = col.rgb
try:
# rgb may be sequence-like or have attributes
if hasattr(rgb, '__getitem__'): # sequence-like
r, g, b = rgb[0], rgb[1], rgb[2]
else: # attribute access
r = getattr(rgb, "r", None) or getattr(rgb, "red", None)
g = getattr(rgb, "g", None) or getattr(rgb, "green", None)
b = getattr(rgb, "b", None) or getattr(rgb, "blue", None)
if r is not None and g is not None and b is not None:
# Tolerant heuristic: red must be noticeably higher than green/blue
if r >= 160 and g <= 120 and b <= 120 and (r - g) >= 30 and (r - b) >= 30:
return True
except Exception:
pass
except Exception:
pass
# Method 2: Check raw XML color code
try:
rPr = run._element.rPr
if rPr is not None:
clr = rPr.find('{http://schemas.openxmlformats.org/wordprocessingml/2006/main}color')
if clr is not None:
val = clr.get('{http://schemas.openxmlformats.org/wordprocessingml/2006/main}val')
if val and re.fullmatch(r"[0-9A-Fa-f]{6}", val):
rr = int(val[:2], 16)
gg = int(val[2:4], 16)
bb = int(val[4:], 16)
if rr >= 160 and gg <= 120 and bb <= 120 and (rr - gg) >= 30 and (rr - bb) >= 30:
return True
except Exception:
pass
# Method 3: Check theme color
try:
color = run.font.color
if color is not None:
theme_color = getattr(color, "theme_color", None)
if theme_color:
theme_str = str(theme_color).lower()
if "red" in theme_str or "accent_2" in theme_str: # Common red theme
return True
except Exception:
pass
# Method 4: String representation fallback
try:
if hasattr(run.font.color, "rgb") and run.font.color.rgb is not None:
s = str(run.font.color.rgb)
# Look for patterns like "FF0000" or similar high-red values
if re.search(r"[Ff]{2}0{4}|[Ee]{2}0{4}|[Dd]{2}0{4}", s):
return True
except Exception:
pass
return False
def _extract_red_text_segments(cell):
"""Extract red text segments from a table cell."""
segments = []
for p_idx, paragraph in enumerate(cell.paragraphs):
current_text = ""
current_runs = []
for r_idx, run in enumerate(paragraph.runs):
if _run_is_red(run) and run.text.strip():
current_text += run.text
current_runs.append((p_idx, r_idx, run))
else:
# End of red segment
if current_runs:
segments.append({
'text': current_text.strip(),
'runs': current_runs.copy(),
'paragraph_idx': p_idx
})
current_text = ""
current_runs = []
# Handle segment at end of paragraph
if current_runs:
segments.append({
'text': current_text.strip(),
'runs': current_runs.copy(),
'paragraph_idx': p_idx
})
return segments
def _has_red_text(cell) -> bool:
"""Check if a cell contains any red text."""
for paragraph in cell.paragraphs:
for run in paragraph.runs:
if _run_is_red(run) and run.text.strip():
return True
return False
# ------------------------------
# Enhanced table processing with schema-aware header mapping
# ------------------------------
def _process_table_with_schema_mapping(table, t_index: int) -> Dict[str, Any]:
"""Process table with enhanced header mapping using master key schemas."""
nrows = len(table.rows)
ncols = max(len(row.cells) for row in table.rows) if nrows > 0 else 0
if nrows == 0:
return {
"table_index": t_index,
"nrows": 0,
"ncols": 0,
"headers": [],
"rows": [],
"red_cells": [],
"mapped_headers": []
}
# Process headers from first row
header_row = table.rows[0]
headers = []
mapped_headers = []
for c_idx, cell in enumerate(header_row.cells[:ncols]):
cell_text = cell.text.strip()
# Try mapping using EXTRA_HEADER_SYNONYMS first
mapped = map_header_using_extra_synonyms(cell_text)
if mapped:
header_label = mapped
log.debug(f"Mapped header '{cell_text}' -> '{mapped}'")
else:
header_label = cell_text
headers.append(cell_text) # Original header
mapped_headers.append(header_label) # Mapped header
# Process all rows
rows_text = []
rows_red_cells = []
rows_red_metadata = []
for r_i, row in enumerate(table.rows):
row_texts = []
row_reds = []
row_red_meta = []
for c_i, cell in enumerate(row.cells[:ncols]):
cell_text = cell.text.strip()
# Extract red text segments with metadata
red_segments = _extract_red_text_segments(cell)
if red_segments:
# Join all red text segments
red_text_parts = [seg['text'] for seg in red_segments if seg['text']]
red_text_joined = " ".join(red_text_parts).strip()
# Store metadata about red text location
red_metadata = {
"has_red": True,
"red_text": red_text_joined,
"segments": len(red_segments),
"total_red_runs": sum(len(seg['runs']) for seg in red_segments)
}
else:
red_text_joined = None
red_metadata = {"has_red": False}
row_texts.append(cell_text)
row_reds.append(red_text_joined)
row_red_meta.append(red_metadata)
rows_text.append(row_texts)
rows_red_cells.append(row_reds)
rows_red_metadata.append(row_red_meta)
return {
"table_index": t_index,
"nrows": nrows,
"ncols": ncols,
"headers": headers, # Original headers
"mapped_headers": mapped_headers, # Mapped headers
"rows": rows_text,
"red_cells": rows_red_cells,
"red_metadata": rows_red_metadata # Additional red text metadata
}
# ------------------------------
# Extraction: paragraphs, headings, tables
# ------------------------------
def extract_from_docx(path: str) -> Dict[str, Any]:
"""Extract content from DOCX with enhanced red text detection and schema mapping."""
log.info(f"Opening document: {path}")
doc = Document(path)
headings: List[str] = []
paragraphs_red: List[Dict[str, Any]] = []
red_runs: List[Dict[str, Any]] = []
tables_out: List[Dict[str, Any]] = []
# Extract headings and paragraphs with red runs
log.info("Processing paragraphs and headings...")
for p_index, para in enumerate(doc.paragraphs):
text = para.text or ""
# Identify heading level from style name if available
style_name = getattr(para.style, "name", "") if para.style is not None else ""
is_heading = bool(re.search(r"Heading\s*\d+|HEADING|TITLE|SUBTITLE", style_name, flags=re.I)) or \
bool(re.search(r"^(MAINTENANCE|MASS|FATIGUE|NHVAS|Vehicle Registration|CORRECTIVE)", text, flags=re.I))
if is_heading:
headings.append(text.strip())
log.debug(f"Found heading: {text.strip()}")
# Gather red runs in this paragraph
paragraph_red_texts = []
char_cursor = 0
for run in para.runs:
run_text = run.text or ""
run_len = len(run_text)
if _run_is_red(run) and run_text.strip():
# Store a red run entry
rr = {
"text": run_text,
"paragraph_index": p_index,
"char_index": char_cursor,
"style_name": style_name,
"normalized_text": _normalize_text(run_text)
}
red_runs.append(rr)
paragraph_red_texts.append(run_text)
log.debug(f"Found red text in paragraph {p_index}: '{run_text.strip()}'")
char_cursor += run_len
if paragraph_red_texts:
paragraphs_red.append({
"paragraph_index": p_index,
"text": text,
"red_texts": paragraph_red_texts,
"style_name": style_name,
"red_text_joined": " ".join(paragraph_red_texts).strip()
})
# Extract tables with enhanced processing
log.info(f"Processing {len(doc.tables)} tables...")
for t_index, table in enumerate(doc.tables):
table_data = _process_table_with_schema_mapping(table, t_index)
tables_out.append(table_data)
# Log red text findings
red_cell_count = sum(1 for row in table_data["red_cells"] for cell in row if cell)
if red_cell_count > 0:
log.info(f"Table {t_index}: Found {red_cell_count} cells with red text")
# Assemble output structure
out = {
"headings": headings,
"paragraphs": paragraphs_red,
"tables": tables_out,
"red_runs": red_runs,
# Enhanced metadata
"meta": {
"source_file": path,
"total_headings": len(headings),
"total_red_paragraphs": len(paragraphs_red),
"total_tables": len(tables_out),
"total_red_runs": len(red_runs),
"total_red_cells": sum(
sum(1 for cell in row for cell in table["red_cells"] if cell)
for table in tables_out
),
"global_settings_used": {
"normalization": GLOBAL_SETTINGS.get("normalize", {}),
"ocr_repair_rules_count": len(GLOBAL_SETTINGS.get("ocr_repair_rules", [])),
"synonyms_count": len(EXTRA_HEADER_SYNONYMS) if EXTRA_HEADER_SYNONYMS else 0
}
}
}
return out
# ------------------------------
# Command-line interface
# ------------------------------
def main(argv):
if len(argv) < 3:
print("Usage: python extract_red_text.py input.docx output.json")
sys.exit(2)
input_docx = argv[1]
output_json = argv[2]
log.info("Starting red text extraction from: %s", input_docx)
log.info("Using master_key configuration with %d header synonyms",
len(EXTRA_HEADER_SYNONYMS) if EXTRA_HEADER_SYNONYMS else 0)
try:
result = extract_from_docx(input_docx)
except Exception as exc:
log.exception("Failed to extract from docx: %s", exc)
raise
# Save JSON pretty-printed for debugging by default
try:
with open(output_json, "w", encoding="utf-8") as fh:
json.dump(result, fh, ensure_ascii=False, indent=2)
log.info("Saved extracted data to: %s", output_json)
except Exception:
log.exception("Failed to write output JSON to %s", output_json)
raise
# Print comprehensive summary
meta = result.get("meta", {})
log.info("=== EXTRACTION SUMMARY ===")
log.info("Headings found: %d", meta.get("total_headings", 0))
log.info("Red paragraphs: %d", meta.get("total_red_paragraphs", 0))
log.info("Red runs total: %d", meta.get("total_red_runs", 0))
log.info("Tables processed: %d", meta.get("total_tables", 0))
log.info("Red cells found: %d", meta.get("total_red_cells", 0))
log.info("Header synonyms used: %d", meta.get("global_settings_used", {}).get("synonyms_count", 0))
if __name__ == "__main__":
main(sys.argv)
# Print output for verification
if len(sys.argv) >= 3:
try:
with open(sys.argv[2], 'r') as f:
print(f"\n📄 EXTRACT_RED_TEXT OUTPUT:\n{f.read()}")
except Exception as e:
print(f"\n❌ Could not read output file: {e}") |