Spaces:
Running
Running
File size: 52,116 Bytes
e8b46b5 704d2a2 b0a4dc4 1055fe1 b0a4dc4 8df3e10 5737d0c b6f7c7f 5737d0c b0a4dc4 2e237ce b0a4dc4 60df8d0 b0a4dc4 60df8d0 b0a4dc4 60df8d0 704d2a2 f4b6b63 b0a4dc4 60df8d0 b0a4dc4 60df8d0 b0a4dc4 60df8d0 b0a4dc4 60df8d0 b0a4dc4 60df8d0 2e237ce 60df8d0 b0a4dc4 60df8d0 5737d0c 60df8d0 5737d0c 2e237ce 5737d0c 2e237ce 5737d0c b0a4dc4 5737d0c 60df8d0 5737d0c 47f7e99 60df8d0 b0a4dc4 60df8d0 b0a4dc4 60df8d0 b0a4dc4 60df8d0 b0a4dc4 60df8d0 2e237ce 60df8d0 2e237ce 60df8d0 2e237ce 60df8d0 2e237ce 60df8d0 2e237ce 60df8d0 2e237ce 60df8d0 2e237ce 60df8d0 2e237ce 60df8d0 2e237ce 60df8d0 2e237ce 60df8d0 2e237ce 60df8d0 2e237ce 60df8d0 2e237ce 5737d0c 2e237ce 60df8d0 2e237ce 60df8d0 2e237ce 60df8d0 2e237ce 60df8d0 2e237ce 60df8d0 b0a4dc4 60df8d0 2e237ce 60df8d0 2e237ce 60df8d0 2e237ce 60df8d0 2e237ce 60df8d0 5737d0c b0a4dc4 60df8d0 5737d0c 60df8d0 b0a4dc4 60df8d0 2e237ce b0a4dc4 60df8d0 b0a4dc4 60df8d0 2e237ce b0a4dc4 2e237ce b6f7c7f 5737d0c b6f7c7f 5737d0c b6f7c7f 5737d0c b6f7c7f 5737d0c b6f7c7f 5737d0c b6f7c7f 5737d0c b6f7c7f 5737d0c b6f7c7f 5737d0c b6f7c7f 5737d0c b6f7c7f b0a4dc4 ab82879 60df8d0 1055fe1 60df8d0 5737d0c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 |
#!/usr/bin/env python3
import re
import json
import sys
from docx import Document
from docx.oxml.ns import qn
try:
from .master_key import TABLE_SCHEMAS, HEADING_PATTERNS, PARAGRAPH_PATTERNS
except ImportError:
# When running as a script directly
from master_key import TABLE_SCHEMAS, HEADING_PATTERNS, PARAGRAPH_PATTERNS
import unicodedata # if not already imported
MONTHS = r"(January|February|March|April|May|June|July|August|September|October|November|December|Jan|Feb|Mar|Apr|Jun|Jul|Aug|Sep|Sept|Oct|Nov|Dec)"
DATE_RE = re.compile(rf"\b(\d{{1,2}})\s*(st|nd|rd|th)?\s+{MONTHS}\s+\d{{4}}\b", re.I)
DATE_NUM_RE = re.compile(r"\b\d{1,2}[/-]\d{1,2}[/-]\d{2,4}\b")
# permissive inline label regexes β allow OCR-space noise and varied punctuation
ACCRED_RE = re.compile(r"\bAccreditation\s*Number[:\s\-β:]*([A-Za-z0-9\s\.\-/,]{2,})", re.I)
EXPIRY_RE = re.compile(r"\bExpiry\s*Date[:\s\-β:]*([A-Za-z0-9\s\.\-/,]{2,})", re.I)
# Parent name aliases to prevent Mass Management vs Mass Management Summary mismatches
AMBIGUOUS_PARENTS = [
("Mass Management Summary", "Mass Management"),
("Mass Management", "Mass Management Summary"),
]
def get_red_text(cell):
reds = [r.text for p in cell.paragraphs for r in p.runs if is_red_font(r) and r.text]
reds = coalesce_numeric_runs(reds)
return normalize_text(" ".join(reds)) if reds else ""
def _compact_digits(s: str) -> str:
# "5 1 0 6 6" -> "51066"
return re.sub(r"(?<=\d)\s+(?=\d)", "", s)
def _fix_ordinal_space(s: str) -> str:
# "13 th" -> "13th"
return re.sub(r"\b(\d+)\s+(st|nd|rd|th)\b", r"\1\2", s, flags=re.I)
def normalize_header_label(s: str) -> str:
"""Normalize a header/label by stripping parentheticals & punctuation."""
s = re.sub(r"\s+", " ", s.strip())
# remove content in parentheses/brackets
s = re.sub(r"\([^)]*\)", "", s)
s = re.sub(r"\[[^]]*\]", "", s)
# unify slashes and hyphens, collapse spaces
s = s.replace("β", "-").replace("β", "-").replace("/", " / ").replace(" ", " ")
return s.strip()
# Canonical label aliases for Vehicle/Maintenance/General headers
LABEL_ALIASES = {
# Vehicle Registration (Maintenance)
"roadworthiness certificates": "Roadworthiness Certificates",
"maintenance records": "Maintenance Records",
"daily checks": "Daily Checks",
"fault recording / reporting": "Fault Recording/ Reporting",
"fault repair": "Fault Repair",
# Vehicle Registration (Mass)
"sub contracted vehicles statement of compliance": "Sub-contracted Vehicles Statement of Compliance",
"weight verification records": "Weight Verification Records",
"rfs suspension certification #": "RFS Suspension Certification #",
"suspension system maintenance": "Suspension System Maintenance",
"trip records": "Trip Records",
"fault recording/ reporting on suspension system": "Fault Recording/ Reporting on Suspension System",
# Common
"registration number": "Registration Number",
"no.": "No.",
"sub contractor": "Sub contractor",
"sub-contractor": "Sub contractor",
}
def looks_like_operator_declaration(context):
"""True iff heading says Operator Declaration and headers include Print Name + Position Title."""
heading = (context.get("heading") or "").strip().lower()
headers = " ".join(context.get("headers") or []).lower()
return (
"operator declaration" in heading
and "print name" in headers
and "position" in headers
and "title" in headers
)
def looks_like_auditor_declaration(context):
heading = (context.get("heading") or "").strip().lower()
headers = " ".join(context.get("headers") or []).lower()
return (
"auditor declaration" in heading
and "print name" in headers
and ("nhvr" in headers or "auditor registration number" in headers)
)
# --- NEW: header-only fallback that ignores headings and just keys on the two column names
def extract_operator_declaration_by_headers_from_end(doc):
"""
Scan tables from the end; if a table's first row contains both
'Print Name' AND 'Position Title' (case-insensitive), extract red text
from the data rows into:
{"Print Name": [...], "Position Title": [...]}
"""
for tbl in reversed(doc.tables):
if len(tbl.rows) < 2:
continue # need header + at least one data row
headers_norm = [normalize_header_label(c.text).lower() for c in tbl.rows[0].cells]
has_print = any("print name" in h for h in headers_norm)
has_pos_tit = any(("position title" in h) or ("position" in h and "title" in h) for h in headers_norm)
if not (has_print and has_pos_tit):
continue
idx_print = next((i for i, h in enumerate(headers_norm) if "print name" in h), None)
idx_pos = next((i for i, h in enumerate(headers_norm) if "position title" in h), None)
if idx_pos is None:
idx_pos = next((i for i, h in enumerate(headers_norm) if ("position" in h and "title" in h)), None)
result = {"Print Name": [], "Position Title": []}
for row in tbl.rows[1:]:
if idx_print is not None and idx_print < len(row.cells):
cell = row.cells[idx_print]
reds = [r.text for p in cell.paragraphs for r in p.runs if is_red_font(r) and r.text]
reds = coalesce_numeric_runs(reds)
txt = normalize_text(" ".join(reds))
if txt:
result["Print Name"].append(txt)
if idx_pos is not None and idx_pos < len(row.cells):
cell = row.cells[idx_pos]
reds = [r.text for p in cell.paragraphs for r in p.runs if is_red_font(r) and r.text]
reds = coalesce_numeric_runs(reds)
txt = normalize_text(" ".join(reds))
if txt:
result["Position Title"].append(txt)
if result["Print Name"] or result["Position Title"]:
return {k: v for k, v in result.items() if v}
return None
# --- end NEW helper
def canonicalize_label(s: str) -> str:
key = normalize_header_label(s).lower()
key = re.sub(r"\s+", " ", key)
return LABEL_ALIASES.get(key, s)
def bag_similarity(a: str, b: str) -> float:
"""Loose bag-of-words similarity for headerβlabel matching."""
aw = {w for w in re.split(r"[^A-Za-z0-9#]+", normalize_header_label(a).lower()) if len(w) > 2 or w in {"#","no"}}
bw = {w for w in re.split(r"[^A-Za-z0-9#]+", normalize_header_label(b).lower()) if len(w) > 2 or w in {"#","no"}}
if not aw or not bw:
return 0.0
inter = len(aw & bw)
return inter / max(len(aw), len(bw))
def coalesce_numeric_runs(text_list):
"""
If a cell yields ['4','5','6','9','8','7','1','2','3'] etc., join continuous single-char digit runs.
Returns ['456987123'] instead of many singles. Non-digit tokens are preserved.
"""
out, buf = [], []
for t in text_list:
if len(t) == 1 and t.isdigit():
buf.append(t)
else:
if buf:
out.append("".join(buf))
buf = []
out.append(t)
if buf:
out.append("".join(buf))
return out
def is_red_font(run):
"""Enhanced red font detection with better color checking"""
col = run.font.color
if col and col.rgb:
r, g, b = col.rgb
if r > 150 and g < 100 and b < 100 and (r-g) > 30 and (r-b) > 30:
return True
rPr = getattr(run._element, "rPr", None)
if rPr is not None:
clr = rPr.find(qn('w:color'))
if clr is not None:
val = clr.get(qn('w:val'))
if val and re.fullmatch(r"[0-9A-Fa-f]{6}", val):
rr, gg, bb = int(val[:2], 16), int(val[2:4], 16), int(val[4:], 16)
if rr > 150 and gg < 100 and bb < 100 and (rr-gg) > 30 and (rr-bb) > 30:
return True
return False
def _prev_para_text(tbl):
"""Get text from previous paragraph before table"""
prev = tbl._tbl.getprevious()
while prev is not None and not prev.tag.endswith("}p"):
prev = prev.getprevious()
if prev is None:
return ""
return "".join(node.text for node in prev.iter() if node.tag.endswith("}t") and node.text).strip()
def normalize_text(text):
"""Normalize text for better matching"""
return re.sub(r'\s+', ' ', text.strip())
def fuzzy_match_heading(heading, patterns):
"""Check if heading matches any pattern with fuzzy matching"""
heading_norm = normalize_text(heading.upper())
for pattern in patterns:
if re.search(pattern, heading_norm, re.IGNORECASE):
return True
return False
def get_table_context(tbl):
"""Get comprehensive context information for table"""
heading = normalize_text(_prev_para_text(tbl))
headers = [normalize_text(c.text) for c in tbl.rows[0].cells if c.text.strip()]
col0 = [normalize_text(r.cells[0].text) for r in tbl.rows if r.cells[0].text.strip()]
first_cell = normalize_text(tbl.rows[0].cells[0].text) if tbl.rows else ""
all_cells = []
for row in tbl.rows:
for cell in row.cells:
text = normalize_text(cell.text)
if text:
all_cells.append(text)
return {
'heading': heading,
'headers': headers,
'col0': col0,
'first_cell': first_cell,
'all_cells': all_cells,
'num_rows': len(tbl.rows),
'num_cols': len(tbl.rows[0].cells) if tbl.rows else 0
}
def calculate_schema_match_score(schema_name, spec, context):
"""Enhanced calculate match score - IMPROVED for Vehicle Registration tables"""
score = 0
reasons = []
# π― VEHICLE REGISTRATION BOOST
if "Vehicle Registration" in schema_name:
vehicle_keywords = ["registration", "vehicle", "sub-contractor", "weight verification", "rfs suspension"]
table_text = " ".join(context['headers']).lower() + " " + context['heading'].lower()
keyword_matches = sum(1 for keyword in vehicle_keywords if keyword in table_text)
if keyword_matches >= 2:
score += 150 # Very high boost for vehicle tables
reasons.append(f"Vehicle Registration keywords: {keyword_matches}/5")
elif keyword_matches >= 1:
score += 75 # Medium boost
reasons.append(f"Some Vehicle Registration keywords: {keyword_matches}/5")
# π― SUMMARY TABLE BOOST (existing logic)
if "Summary" in schema_name and "details" in " ".join(context['headers']).lower():
score += 100
reasons.append(f"Summary schema with DETAILS column - perfect match")
if "Summary" not in schema_name and "details" in " ".join(context['headers']).lower():
score -= 75
reasons.append(f"Non-summary schema penalized for DETAILS column presence")
# Context exclusions
if spec.get("context_exclusions"):
table_text = " ".join(context['headers']).lower() + " " + context['heading'].lower()
for exclusion in spec["context_exclusions"]:
if exclusion.lower() in table_text:
score -= 50
reasons.append(f"Context exclusion penalty: '{exclusion}' found")
# Context keywords
if spec.get("context_keywords"):
table_text = " ".join(context['headers']).lower() + " " + context['heading'].lower()
keyword_matches = 0
for keyword in spec["context_keywords"]:
if keyword.lower() in table_text:
keyword_matches += 1
if keyword_matches > 0:
score += keyword_matches * 15
reasons.append(f"Context keyword matches: {keyword_matches}/{len(spec['context_keywords'])}")
# Direct first cell match
if context['first_cell'] and context['first_cell'].upper() == schema_name.upper():
score += 100
reasons.append(f"Direct first cell match: '{context['first_cell']}'")
# Heading pattern matching
if spec.get("headings"):
for h in spec["headings"]:
if fuzzy_match_heading(context['heading'], [h["text"]]):
score += 50
reasons.append(f"Heading match: '{context['heading']}'")
break
# Column header matching
if spec.get("columns"):
cols = [normalize_text(col) for col in spec["columns"]]
matches = 0
for col in cols:
if any(col.upper() in h.upper() for h in context['headers']):
matches += 1
if matches == len(cols):
score += 60
reasons.append(f"All column headers match: {cols}")
elif matches > 0:
score += matches * 20
reasons.append(f"Partial column matches: {matches}/{len(cols)}")
# Label matching for left-oriented tables
if spec.get("orientation") == "left":
labels = [normalize_text(lbl) for lbl in spec["labels"]]
matches = 0
for lbl in labels:
if any(lbl.upper() in c.upper() or c.upper() in lbl.upper() for c in context['col0']):
matches += 1
if matches > 0:
score += (matches / len(labels)) * 30
reasons.append(f"Left orientation label matches: {matches}/{len(labels)}")
# π― ENHANCED Label matching for row1-oriented tables (Vehicle Registration)
elif spec.get("orientation") == "row1":
labels = [normalize_text(lbl) for lbl in spec["labels"]]
matches = 0
for lbl in labels:
if any(lbl.upper() in h.upper() or h.upper() in lbl.upper() for h in context['headers']):
matches += 1
elif any(word.upper() in " ".join(context['headers']).upper() for word in lbl.split() if len(word) > 3):
matches += 0.5 # Partial credit
if matches > 0:
score += (matches / len(labels)) * 40
reasons.append(f"Row1 orientation header matches: {matches}/{len(labels)}")
# Special handling for Declaration tables (existing logic)
if schema_name == "Operator Declaration" and context['first_cell'].upper() == "PRINT NAME":
if "OPERATOR DECLARATION" in context['heading'].upper():
score += 80
reasons.append("Operator Declaration context match")
elif any("MANAGER" in cell.upper() for cell in context['all_cells']):
score += 60
reasons.append("Manager found in cells (likely Operator Declaration)")
if schema_name == "NHVAS Approved Auditor Declaration" and context['first_cell'].upper() == "PRINT NAME":
if any("MANAGER" in cell.upper() for cell in context['all_cells']):
score -= 50
reasons.append("Penalty: Manager found (not auditor)")
return score, reasons
def match_table_schema(tbl):
"""Improved table schema matching with explicit Attendance/Operator/Auditor guards."""
context = get_table_context(tbl)
heading_low = (context.get("heading") or "").strip().lower()
headers_norm = [normalize_header_label(h).lower() for h in context.get("headers", [])]
has_print = any("print name" in h for h in headers_norm)
has_pos = any(("position title" in h) or ("position" in h and "title" in h) for h in headers_norm)
has_namecol = any(("name" in h) and ("print name" not in h) for h in headers_norm)
has_poscol = any("position" in h for h in headers_norm)
has_aud_hint = any(("auditor" in h) or ("auditor registration" in h) for h in headers_norm)
# Force-guard: explicit headings
if "operator declaration" in heading_low and has_print and has_pos:
return "Operator Declaration"
if "auditor declaration" in heading_low and has_print:
return "NHVAS Approved Auditor Declaration"
if ("attendance" in heading_low or "attendees" in heading_low) and has_namecol and has_poscol:
return "Attendance List (Names and Position Titles)"
# Priority: auditor if signature columns + auditor hints
if has_print and has_aud_hint:
return "NHVAS Approved Auditor Declaration"
# Classic 2-col signature table β Operator Declaration
if has_print and has_pos:
return "Operator Declaration"
# Heuristic fallbacks
if looks_like_auditor_declaration(context):
return "NHVAS Approved Auditor Declaration"
if looks_like_operator_declaration(context):
return "Operator Declaration"
# Score-based fallback
best_match, best_score = None, 0
for name, spec in TABLE_SCHEMAS.items():
score, _ = calculate_schema_match_score(name, spec, context)
if score > best_score:
best_score, best_match = score, name
return best_match if best_score >= 20 else None
def check_multi_schema_table(tbl):
"""Check if table contains multiple schemas and split appropriately"""
context = get_table_context(tbl)
operator_labels = ["Operator name (Legal entity)", "NHVAS Accreditation No.", "Registered trading name/s",
"Australian Company Number", "NHVAS Manual"]
contact_labels = ["Operator business address", "Operator Postal address", "Email address", "Operator Telephone Number"]
has_operator = any(any(op_lbl.upper() in cell.upper() for op_lbl in operator_labels) for cell in context['col0'])
has_contact = any(any(cont_lbl.upper() in cell.upper() for cont_lbl in contact_labels) for cell in context['col0'])
if has_operator and has_contact:
return ["Operator Information", "Operator contact details"]
return None
def extract_multi_schema_table(tbl, schemas):
"""Extract data from table with multiple schemas"""
result = {}
for schema_name in schemas:
if schema_name not in TABLE_SCHEMAS:
continue
spec = TABLE_SCHEMAS[schema_name]
schema_data = {}
for ri, row in enumerate(tbl.rows):
if ri == 0:
continue
row_label = normalize_text(row.cells[0].text)
belongs_to_schema = False
matched_label = None
for spec_label in spec["labels"]:
spec_norm = normalize_text(spec_label).upper()
row_norm = row_label.upper()
if spec_norm == row_norm or spec_norm in row_norm or row_norm in spec_norm:
belongs_to_schema = True
matched_label = spec_label
break
if not belongs_to_schema:
continue
for ci, cell in enumerate(row.cells):
red_txt = "".join(run.text for p in cell.paragraphs for run in p.runs if is_red_font(run)).strip()
if red_txt:
if matched_label not in schema_data:
schema_data[matched_label] = []
if red_txt not in schema_data[matched_label]:
schema_data[matched_label].append(red_txt)
if schema_data:
result[schema_name] = schema_data
return result
def extract_table_data(tbl, schema_name, spec):
"""Extract red text data from table based on schema β per-row repeats for specific tables."""
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# OPERATOR DECLARATION (row1 headers: Print Name | Position Title)
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
if schema_name == "Operator Declaration":
print(f" π§Ύ EXTRACTION FIX: Processing Operator Declaration table")
labels = spec["labels"] # ["Print Name", "Position Title"]
canonical_labels = {canonicalize_label(lbl): lbl for lbl in labels}
collected = {lbl: [] for lbl in labels}
if len(tbl.rows) < 2:
print(f" β Operator Declaration table has less than 2 rows")
return {}
# map header cells β labels (row1 orientation)
header_row = tbl.rows[0]
column_mapping = {}
print(f" π Mapping {len(header_row.cells)} header cells to labels")
for col_idx, cell in enumerate(header_row.cells):
raw_h = normalize_text(cell.text)
header_text = normalize_header_label(raw_h)
if not header_text:
continue
print(f" Column {col_idx}: '{raw_h}'")
# alias/canonical first
canon = canonicalize_label(header_text)
if canon in canonical_labels:
best_label = canonical_labels[canon]
print(f" β
Mapped to: '{best_label}' (alias)")
column_mapping[col_idx] = best_label
continue
# else bag-of-words similarity
best_label, best_score = None, 0.0
for canon_lab, original_lab in canonical_labels.items():
s = bag_similarity(header_text, canon_lab)
if s > best_score:
best_score, best_label = s, original_lab
if best_label and best_score >= 0.40:
print(f" β
Mapped to: '{best_label}' (score: {best_score:.2f})")
column_mapping[col_idx] = best_label
else:
print(f" β οΈ No mapping found for '{raw_h}'")
print(f" π Total column mappings: {len(column_mapping)}")
# collect red text from the (usually single) data row
for row_idx in range(1, len(tbl.rows)):
row = tbl.rows[row_idx]
print(f" π Processing data row {row_idx}")
for col_idx, cell in enumerate(row.cells):
if col_idx not in column_mapping:
continue
label = column_mapping[col_idx]
reds = [run.text for p in cell.paragraphs for run in p.runs if is_red_font(run) and run.text]
if not reds:
continue
reds = coalesce_numeric_runs(reds)
red_txt = normalize_text(" ".join(reds))
if not red_txt:
continue
print(f" π΄ Found red text in '{label}': '{red_txt}'")
collected[label].append(red_txt)
result = {k: v for k, v in collected.items() if v}
print(f" β
Operator Declaration extracted: {len(result)} columns with data")
return result
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# A) Vehicle Registration tables (per-row accumulation; NO dedupe)
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
if "Vehicle Registration" in schema_name:
print(f" π EXTRACTION FIX: Processing Vehicle Registration table")
labels = spec["labels"]
canonical_labels = {canonicalize_label(lbl): lbl for lbl in labels}
collected = {lbl: [] for lbl in labels} # β keep every row value
unmapped_bucket = {}
if len(tbl.rows) < 2:
print(f" β Vehicle table has less than 2 rows")
return {}
header_row = tbl.rows[0]
column_mapping = {}
print(f" π Mapping {len(header_row.cells)} header cells to labels")
for col_idx, cell in enumerate(header_row.cells):
raw_h = normalize_text(cell.text)
header_text = normalize_header_label(raw_h)
if not header_text:
continue
print(f" Column {col_idx}: '{raw_h}'")
# Try alias/canonical first
canon = canonicalize_label(header_text)
if canon in canonical_labels:
best_label = canonical_labels[canon]
print(f" β
Mapped to: '{best_label}' (alias)")
column_mapping[col_idx] = best_label
continue
# Else bag-of-words similarity
best_label, best_score = None, 0.0
for canon_lab, original_lab in canonical_labels.items():
s = bag_similarity(header_text, canon_lab)
if s > best_score:
best_score, best_label = s, original_lab
if best_label and best_score >= 0.40:
print(f" β
Mapped to: '{best_label}' (score: {best_score:.2f})")
column_mapping[col_idx] = best_label
else:
print(f" β οΈ No mapping found for '{raw_h}'")
unmapped_bucket[raw_h] = []
print(f" π Total column mappings: {len(column_mapping)}")
header_texts = [normalize_text(hc.text) for hc in header_row.cells]
for row_idx in range(1, len(tbl.rows)):
row = tbl.rows[row_idx]
print(f" π Processing data row {row_idx}")
for col_idx, cell in enumerate(row.cells):
reds = [run.text for p in cell.paragraphs for run in p.runs if is_red_font(run) and run.text]
if not reds:
continue
reds = coalesce_numeric_runs(reds)
red_txt = normalize_text(" ".join(reds))
if not red_txt:
continue
if col_idx in column_mapping:
label = column_mapping[col_idx]
print(f" π΄ Found red text in '{label}': '{red_txt}'")
collected[label].append(red_txt) # β append every occurrence
else:
header_name = header_texts[col_idx] if col_idx < len(header_texts) else f"(unmapped col {col_idx})"
unmapped_bucket.setdefault(header_name, []).append(red_txt)
result = {k: v for k, v in collected.items() if v}
if unmapped_bucket:
result.update({f"UNMAPPED::{k}": v for k, v in unmapped_bucket.items() if v})
print(f" β
Vehicle Registration extracted: {len(result)} columns with data")
return result
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# B) Driver / Scheduler Records Examined (per-row accumulation; NO dedupe)
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
if "Driver / Scheduler" in schema_name:
print(f" π€ EXTRACTION FIX: Processing Driver / Scheduler table")
labels = spec["labels"]
canonical_labels = {canonicalize_label(lbl): lbl for lbl in labels}
collected = {lbl: [] for lbl in labels} # β keep every row value
unmapped_bucket = {}
if len(tbl.rows) < 2:
print(f" β Driver/Scheduler table has less than 2 rows")
return {}
header_row = tbl.rows[0]
column_mapping = {}
print(f" π Mapping {len(header_row.cells)} header cells to labels")
for col_idx, cell in enumerate(header_row.cells):
raw_h = normalize_text(cell.text)
header_text = normalize_header_label(raw_h)
if not header_text:
continue
print(f" Column {col_idx}: '{raw_h}'")
# Try alias/canonical first (rarely used here, but safe)
canon = canonicalize_label(header_text)
if canon in canonical_labels:
best_label = canonical_labels[canon]
print(f" β
Mapped to: '{best_label}' (alias)")
column_mapping[col_idx] = best_label
continue
# Else bag-of-words similarity (good for long headings)
best_label, best_score = None, 0.0
for canon_lab, original_lab in canonical_labels.items():
s = bag_similarity(header_text, canon_lab)
if s > best_score:
best_score, best_label = s, original_lab
if best_label and best_score >= 0.40:
print(f" β
Mapped to: '{best_label}' (score: {best_score:.2f})")
column_mapping[col_idx] = best_label
else:
print(f" β οΈ No mapping found for '{raw_h}'")
unmapped_bucket[raw_h] = []
print(f" π Total column mappings: {len(column_mapping)}")
header_texts = [normalize_text(hc.text) for hc in header_row.cells]
for row_idx in range(1, len(tbl.rows)):
row = tbl.rows[row_idx]
print(f" π Processing data row {row_idx}")
for col_idx, cell in enumerate(row.cells):
reds = [run.text for p in cell.paragraphs for run in p.runs if is_red_font(run) and run.text]
if not reds:
continue
reds = coalesce_numeric_runs(reds)
red_txt = normalize_text(" ".join(reds))
if not red_txt:
continue
if col_idx in column_mapping:
label = column_mapping[col_idx]
print(f" π΄ Found red text in '{label}': '{red_txt}'")
collected[label].append(red_txt) # β append every occurrence
else:
header_name = header_texts[col_idx] if col_idx < len(header_texts) else f"(unmapped col {col_idx})"
unmapped_bucket.setdefault(header_name, []).append(red_txt)
result = {k: v for k, v in collected.items() if v}
if unmapped_bucket:
result.update({f"UNMAPPED::{k}": v for k, v in unmapped_bucket.items() if v})
print(f" β
Driver / Scheduler extracted: {len(result)} columns with data")
return result
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# ATTENDANCE LIST (keep red-only; avoid duplicates; prefer whole-cell lines)
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
if "Attendance List" in schema_name:
items, seen = [], set()
# header sniff
hdr = [normalize_text(c.text).lower() for c in (tbl.rows[0].cells if tbl.rows else [])]
start_row = 1 if (any("name" in h for h in hdr) and any("position" in h for h in hdr)) else 0
for row in tbl.rows[start_row:]:
# collect red text from each cell
reds = [get_red_text(c) for c in row.cells]
reds = [r for r in reds if r]
if not reds:
continue
# if first cell already contains "Name - Position", use it as-is
if " - " in reds[0]:
entry = reds[0]
else:
# typical 2 columns: Name | Position
if len(reds) >= 2:
entry = f"{reds[0]} - {reds[1]}"
else:
entry = reds[0]
entry = normalize_text(entry)
# collapse accidental double-ups like "A - B - A - B"
parts = [p.strip() for p in entry.split(" - ") if p.strip()]
if len(parts) >= 4 and parts[:2] == parts[2:4]:
entry = " - ".join(parts[:2])
if entry and entry not in seen:
seen.add(entry)
items.append(entry)
return {schema_name: items} if items else {}
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# ACCREDITATION VEHICLE SUMMARY (pairwise label/value per row)
# Expected labels in spec["labels"]:
# ["Number of powered vehicles", "Number of trailing vehicles"]
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
if schema_name == "Accreditation Vehicle Summary":
labels = spec["labels"]
canonical_labels = {normalize_header_label(lbl).lower(): lbl for lbl in labels}
collected = {lbl: [] for lbl in labels}
def map_label(txt):
t = normalize_header_label(txt).lower()
if t in canonical_labels:
return canonical_labels[t]
# loose fallback
best, score = None, 0.0
for canon, original in canonical_labels.items():
s = bag_similarity(t, canon)
if s > score:
best, score = original, s
return best if score >= 0.40 else None
for row in tbl.rows:
# iterate label/value pairs across the row: (0,1), (2,3), ...
i = 0
while i + 1 < len(row.cells):
lbl_txt = normalize_text(row.cells[i].text)
val_txt = get_red_text(row.cells[i + 1])
mlabel = map_label(lbl_txt)
if mlabel and val_txt:
collected[mlabel].append(val_txt)
i += 2
return {k: v for k, v in collected.items() if v}
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# C) Generic tables (unchanged: WITH dedupe)
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
labels = spec["labels"] + [schema_name]
collected = {lbl: [] for lbl in labels}
seen = {lbl: set() for lbl in labels}
by_col = (spec.get("orientation") == "row1")
start_row = 1 if by_col else 0
rows = tbl.rows[start_row:]
for ri, row in enumerate(rows):
for ci, cell in enumerate(row.cells):
reds = [run.text for p in cell.paragraphs for run in p.runs if is_red_font(run) and run.text]
if not reds:
continue
reds = coalesce_numeric_runs(reds)
red_txt = normalize_text(" ".join(reds))
if not red_txt:
continue
if by_col:
if ci < len(spec["labels"]):
lbl = spec["labels"][ci]
else:
lbl = schema_name
else:
raw_label = normalize_text(row.cells[0].text)
lbl = None
for spec_label in spec["labels"]:
if normalize_text(spec_label).upper() == raw_label.upper():
lbl = spec_label
break
if not lbl:
a_raw = normalize_header_label(raw_label).upper()
for spec_label in spec["labels"]:
a_spec = normalize_header_label(spec_label).upper()
if a_spec in a_raw or a_raw in a_spec:
lbl = spec_label
break
if not lbl:
lbl = schema_name
if red_txt not in seen[lbl]:
seen[lbl].add(red_txt)
collected[lbl].append(red_txt)
return {k: v for k, v in collected.items() if v}
def _try_extract_nature_inline_labels(tbl, out_dict):
# Check context
prev = normalize_text(_prev_para_text(tbl)).lower()
if "nature of the operators business" not in prev:
return False
acc_val, exp_val, para_bits = None, None, []
for row in tbl.rows[1:]:
row_text = " ".join(normalize_text(c.text) for c in row.cells if c.text.strip())
if not row_text:
continue
low = row_text.lower()
def _red_from_row():
vals = []
for c in row.cells:
for p in c.paragraphs:
reds = [r.text for r in p.runs if is_red_font(r) and r.text.strip()]
if reds:
vals.extend(reds)
return normalize_text(" ".join(coalesce_numeric_runs(vals)))
if low.startswith("accreditation number"):
v = _red_from_row() or normalize_text(row_text.split(":", 1)[-1])
acc_val = _compact_digits(v) if v else acc_val
continue
if low.startswith("expiry date"):
v = _red_from_row() or normalize_text(row_text.split(":", 1)[-1])
exp_val = _fix_ordinal_space(v) if v else exp_val
continue
# otherwise narrative line
para_bits.append(row_text)
if not (para_bits or acc_val or exp_val):
return False
sec = out_dict.setdefault("Nature of the Operators Business (Summary)", {})
if para_bits:
sec.setdefault("Nature of the Operators Business (Summary):", []).append(
normalize_text(" ".join(para_bits))
)
if acc_val:
sec.setdefault("Accreditation Number", []).append(acc_val)
if exp_val:
sec.setdefault("Expiry Date", []).append(exp_val)
return True
def extract_red_text(input_doc):
# input_doc: docx.Document object or file path
if isinstance(input_doc, str):
doc = Document(input_doc)
else:
doc = input_doc
out = {}
table_count = 0
for tbl in doc.tables:
table_count += 1
# Nature-of-business inline labels, if present as table rows
if _try_extract_nature_inline_labels(tbl, out):
continue
multi_schemas = check_multi_schema_table(tbl)
if multi_schemas:
multi_data = extract_multi_schema_table(tbl, multi_schemas)
for schema_name, schema_data in multi_data.items():
if schema_data:
if schema_name in out:
for k, v in schema_data.items():
if k in out[schema_name]:
out[schema_name][k].extend(v)
else:
out[schema_name][k] = v
else:
out[schema_name] = schema_data
continue
schema = match_table_schema(tbl)
if not schema:
continue
spec = TABLE_SCHEMAS[schema]
data = extract_table_data(tbl, schema, spec)
if data:
if schema in out:
for k, v in data.items():
if k in out[schema]:
out[schema][k].extend(v)
else:
out[schema][k] = v
else:
out[schema] = data
# paragraphs (FIX: do not return early; build full 'paras' then attach)
paras = {}
for idx, para in enumerate(doc.paragraphs):
red_txt = "".join(r.text for r in para.runs if is_red_font(r)).strip()
if not red_txt:
continue
context = None
for j in range(idx-1, -1, -1):
txt = normalize_text(doc.paragraphs[j].text)
if txt:
all_patterns = HEADING_PATTERNS["main"] + HEADING_PATTERNS["sub"]
if any(re.search(p, txt, re.IGNORECASE) for p in all_patterns):
context = txt
break
if not context and re.fullmatch(PARAGRAPH_PATTERNS["date_line"], red_txt):
context = "Date"
if not context:
context = "(para)"
paras.setdefault(context, []).append(red_txt)
if paras:
out["paragraphs"] = paras
# Fallback: ensure we capture the last-page Operator Declaration by headers
if "Operator Declaration" not in out:
op_dec = extract_operator_declaration_by_headers_from_end(doc)
if op_dec:
out["Operator Declaration"] = op_dec
# ββ Handle ambiguous parents without creating unwanted duplicates ββ
# Prefer the "Summary" variant when both keys derive from the same Std-style content.
summary_pairs = [
("Mass Management Summary", "Mass Management"),
("Maintenance Management Summary", "Maintenance Management"),
("Fatigue Management Summary", "Fatigue Management"),
]
for summary_key, alt_key in summary_pairs:
# if only alt exists, consider promoting it to the summary name
if alt_key in out and summary_key not in out:
# only promote if the alt content looks like a standards/details map
alt_section = out.get(alt_key)
if isinstance(alt_section, dict) and any(k.strip().startswith("Std") for k in alt_section.keys()):
out[summary_key] = alt_section
del out[alt_key]
continue
# if both exist, merge alt into summary (avoiding duplicates)
if summary_key in out and alt_key in out:
s = out[summary_key] or {}
a = out[alt_key] or {}
# Only auto-merge when both are dicts and look like Std mappings (safe heuristic)
if isinstance(s, dict) and isinstance(a, dict) and \
(any(k.strip().startswith("Std") for k in s.keys()) or any(k.strip().startswith("Std") for k in a.keys())):
for k, v in a.items():
if not v:
continue
if k in s:
# append unique items
if isinstance(s[k], list) and isinstance(v, list):
for item in v:
if item not in s[k]:
s[k].append(item)
else:
# fallback: convert to lists
s.setdefault(k, [])
for item in (v if isinstance(v, list) else [v]):
if item not in s[k]:
s[k].append(item)
else:
s[k] = v if isinstance(v, list) else [v]
out[summary_key] = s
# remove the alt key to avoid duplicate sections
del out[alt_key]
# ββ add Accreditation Number and Expiry Date from Nature paragraph (do NOT edit the paragraph) ββ
for sec_key, section in list(out.items()):
if not isinstance(section, dict):
continue
if re.fullmatch(r"Nature of the Operators Business \(Summary\)", sec_key, flags=re.I):
# find the main paragraph field "...(Summary):"
para_field = None
for k in section.keys():
if re.search(r"\(Summary\):\s*$", k):
para_field = k
break # <- break only when found
if not para_field:
continue
raw = section.get(para_field)
if isinstance(raw, list):
para = " ".join(str(x) for x in raw)
else:
para = str(raw or "")
m_acc = ACCRED_RE.search(para)
m_exp = EXPIRY_RE.search(para)
# labeled matches
if m_acc:
v = _compact_digits(_fix_ordinal_space(normalize_text(m_acc.group(1))))
if v:
section.setdefault("Accreditation Number", []).append(v)
if m_exp:
v = _compact_digits(_fix_ordinal_space(normalize_text(m_exp.group(1))))
if v:
section.setdefault("Expiry Date", []).append(v)
# fallback when labels are missing but values appear at the end
acc_missing = not section.get("Accreditation Number")
exp_missing = not section.get("Expiry Date")
if acc_missing or exp_missing:
# 1) Try to find the last date-like token (wordy month or numeric)
last_date_match = None
# prefer textual month matches (allowing OCR noise like "22 nd September 2023" or "202 3")
month_rx = re.compile(rf"\b\d{{1,2}}\s*(?:st|nd|rd|th)?\s+{MONTHS}\s+\d{{2,4}}\b", re.I)
for md in month_rx.finditer(para):
last_date_match = md
# fallback numeric date forms (dd/mm/yyyy or dd-mm-yyyy)
if not last_date_match:
for md in DATE_RE.finditer(para):
last_date_match = md
if not last_date_match:
for md in DATE_NUM_RE.finditer(para):
last_date_match = md
# 2) If we found a candidate expiry date, normalise and use it
if last_date_match:
date_txt = last_date_match.group(0)
# fix noisy ordinals/spacing and collapsed digit noise (e.g., "202 3" -> "2023")
date_txt = _fix_ordinal_space(date_txt)
date_txt = re.sub(r"\b(20)\s?(\d{2})\b", r"\1\2", date_txt)
date_txt = re.sub(r"\b(19)\s?(\d{2})\b", r"\1\2", date_txt)
if exp_missing:
section.setdefault("Expiry Date", []).append(normalize_text(date_txt))
# 3) If accreditation is missing, try to extract digits immediately *before* the date
if acc_missing:
before = para[: last_date_match.start()].strip()
# look for long digit run (allow spaces between digits)
m_num = re.search(r"(\d[\d\s]{3,16}\d)\s*$", before)
if m_num:
num_txt = _compact_digits(normalize_text(m_num.group(1)))
if num_txt:
section.setdefault("Accreditation Number", []).append(num_txt)
# 4) If we still didn't find an accreditation number, try scanning entire paragraph for the longest digit run
if acc_missing:
# collect digit-like tokens, collapse internal spaces and pick the longest
digit_tokens = [ _compact_digits(t) for t in re.findall(r"[\d\s]{4,}", para) ]
digit_tokens = [d for d in digit_tokens if len(re.sub(r'\D','',d)) >= 5] # require >=5 digits
if digit_tokens:
# choose the longest / most plausible digits (deterministic)
digit_tokens.sort(key=lambda s: (-len(re.sub(r'\D','',s)), s))
section.setdefault("Accreditation Number", []).append(digit_tokens[0])
# 5) If expiry still missing, do a broad textual month search anywhere in the paragraph
if exp_missing:
broad_month_rx = re.compile(rf"\b\d{{1,2}}\s*(?:st|nd|rd|th)?\s+{MONTHS}\s+\d{{2,4}}\b|\b{MONTHS}\s+\d{{2,4}}\b", re.I)
md_any = list(broad_month_rx.finditer(para))
if md_any:
candidate = md_any[-1].group(0)
candidate = _fix_ordinal_space(candidate)
candidate = re.sub(r"\b(20)\s?(\d{2})\b", r"\1\2", candidate)
if candidate:
section.setdefault("Expiry Date", []).append(normalize_text(candidate))
# ββ STRONGER: canonicalise & merge "X Summary" <-> "X" variants (case-insensitive) ββ
def _base_name(k: str) -> str:
# remove trailing "summary" and punctuation, normalise spaces
if not isinstance(k, str):
return ""
b = re.sub(r"[\(\)\[\]\:]+", " ", k)
b = re.sub(r"\bsummary\b\s*[:\-]*", "", b, flags=re.I)
b = re.sub(r"\s+", " ", b).strip().lower()
return b
# Build index: base -> list of original keys
base_index = {}
for key in list(out.keys()):
base = _base_name(key)
if not base:
continue
base_index.setdefault(base, []).append(key)
# For each base that maps to >1 key, merge into the Summary-preferring canonical key
for base, keys in base_index.items():
if len(keys) < 2:
continue
# prefer a key that explicitly contains 'summary' (case-insensitive)
canonical = None
for k in keys:
if re.search(r"\bsummary\b", k, re.I):
canonical = k
break
# else pick the lexicographically first (deterministic)
canonical = canonical or sorted(keys, key=lambda s: s.lower())[0]
# merge everything else into canonical
for k in keys:
if k == canonical:
continue
src = out.get(k)
dst = out.get(canonical)
# only merge dict-like Std mappings (safe-guard)
if isinstance(dst, dict) and isinstance(src, dict):
for std_key, vals in src.items():
if not vals:
continue
if std_key in dst:
# append unique items preserving order
for v in vals if isinstance(vals, list) else [vals]:
if v not in dst[std_key]:
dst[std_key].append(v)
else:
dst[std_key] = list(vals) if isinstance(vals, list) else [vals]
out[canonical] = dst
# remove source key
del out[k]
else:
# If not both dicts, prefer keeping canonical and drop duplicates conservatively
if k in out:
del out[k]
return out
def extract_red_text_filelike(input_file, output_file):
"""
Accepts:
input_file: file-like object (BytesIO/File) or path
output_file: file-like object (opened for writing text) or path
"""
if hasattr(input_file, "seek"):
input_file.seek(0)
doc = Document(input_file)
result = extract_red_text(doc)
if hasattr(output_file, "write"):
json.dump(result, output_file, indent=2, ensure_ascii=False)
output_file.flush()
else:
with open(output_file, "w", encoding="utf-8") as f:
json.dump(result, f, indent=2, ensure_ascii=False)
return result
if __name__ == "__main__":
# Support both script and app/file-like usage
if len(sys.argv) == 3:
input_docx = sys.argv[1]
output_json = sys.argv[2]
doc = Document(input_docx)
word_data = extract_red_text(doc)
with open(output_json, 'w', encoding='utf-8') as f:
json.dump(word_data, f, indent=2, ensure_ascii=False)
print(json.dumps(word_data, indent=2, ensure_ascii=False))
else:
print("To use as a module: extract_red_text_filelike(input_file, output_file)")
|