Spaces:
Paused
Paused
File size: 22,726 Bytes
ebef213 d7c623e ebef213 9b05869 ebef213 3b5ff37 ebef213 3b5ff37 d7c623e ebef213 9b05869 ebef213 9b05869 ebef213 3f8bf2e ebef213 3f8bf2e d795566 3b5ff37 ebef213 3b5ff37 71052e8 ebef213 3b5ff37 ebef213 3b5ff37 ebef213 3b5ff37 ebef213 3b5ff37 ebef213 3b5ff37 ebef213 c4db7b7 3b5ff37 ebef213 c4db7b7 ebef213 c4db7b7 ebef213 761ae64 ebef213 d17f8fd fabe3ab ebef213 fabe3ab ebef213 fabe3ab ebef213 fabe3ab ebef213 fabe3ab ebef213 1947e99 fabe3ab 1947e99 fabe3ab 7c1bfd4 fabe3ab ebef213 1947e99 7c1bfd4 ebef213 3b5ff37 fabe3ab ebef213 3b5ff37 9ae4c2d 4cc29be 9ae4c2d 4cc29be 9ae4c2d 4cc29be 9ae4c2d 4cc29be 9ae4c2d 4cc29be 9ae4c2d 4cc29be 9ae4c2d 4cc29be 9ae4c2d 4cc29be 9ae4c2d ebef213 e9d1b13 ebef213 9b05869 ebef213 3b5ff37 ebef213 9b05869 ebef213 3b5ff37 ebef213 3b5ff37 ebef213 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 |
# FILE: api/ltx_server_refactored_complete.py
# DESCRIPTION: Final orchestrator for LTX-Video generation.
# This version includes the fix for the narrative generation overlap bug and
# consolidates all previous refactoring and debugging improvements.
import gc
import json
import logging
import os
import shutil
import sys
import tempfile
import time
from pathlib import Path
from typing import Dict, List, Optional, Tuple
import random
import torch
import yaml
import numpy as np
from huggingface_hub import hf_hub_download
# ==============================================================================
# --- SETUP E IMPORTAÇÕES DO PROJETO ---
# ==============================================================================
# Configuração de logging e supressão de warnings
import warnings
warnings.filterwarnings("ignore")
logging.getLogger("huggingface_hub").setLevel(logging.ERROR)
log_level = os.environ.get("ADUC_LOG_LEVEL", "INFO").upper()
logging.basicConfig(level=log_level, format='[%(levelname)s] [%(name)s] %(message)s')
# --- Constantes de Configuração ---
DEPS_DIR = Path("/data")
LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video"
RESULTS_DIR = Path("/app/output")
DEFAULT_FPS = 24.0
FRAMES_ALIGNMENT = 8
LTX_REPO_ID = "Lightricks/LTX-Video"
# Garante que a biblioteca LTX-Video seja importável
def add_deps_to_path():
repo_path = str(LTX_VIDEO_REPO_DIR.resolve())
if repo_path not in sys.path:
sys.path.insert(0, repo_path)
logging.info(f"[ltx_server] LTX-Video repository added to sys.path: {repo_path}")
add_deps_to_path()
# --- Módulos da nossa Arquitetura ---
try:
from api.gpu_manager import gpu_manager
from managers.vae_manager import vae_manager_singleton
from tools.video_encode_tool import video_encode_tool_singleton
from api.ltx.ltx_utils import (
build_ltx_pipeline_on_cpu,
seed_everything,
load_image_to_tensor_with_resize_and_crop,
ConditioningItem,
)
from api.utils.debug_utils import log_function_io
except ImportError as e:
logging.critical(f"A crucial import from the local API/architecture failed. Error: {e}", exc_info=True)
sys.exit(1)
# ==============================================================================
# --- FUNÇÕES AUXILIARES DO ORQUESTRADOR ---
# ==============================================================================
@log_function_io
def calculate_padding(orig_h: int, orig_w: int, target_h: int, target_w: int) -> Tuple[int, int, int, int]:
"""Calculates symmetric padding required to meet target dimensions."""
pad_h = target_h - orig_h
pad_w = target_w - orig_w
pad_top = pad_h // 2
pad_bottom = pad_h - pad_top
pad_left = pad_w // 2
pad_right = pad_w - pad_left
return (pad_left, pad_right, pad_top, pad_bottom)
# ==============================================================================
# --- CLASSE DE SERVIÇO (O ORQUESTRADOR) ---
# ==============================================================================
class VideoService:
"""
Orchestrates the high-level logic of video generation, delegating low-level
tasks to specialized managers and utility modules.
"""
@log_function_io
def __init__(self):
t0 = time.perf_counter()
logging.info("Initializing VideoService Orchestrator...")
RESULTS_DIR.mkdir(parents=True, exist_ok=True)
target_main_device_str = str(gpu_manager.get_ltx_device())
target_vae_device_str = str(gpu_manager.get_ltx_vae_device())
logging.info(f"LTX allocated to devices: Main='{target_main_device_str}', VAE='{target_vae_device_str}'")
self.config = self._load_config()
self._resolve_model_paths_from_cache()
self.pipeline, self.latent_upsampler = build_ltx_pipeline_on_cpu(self.config)
self.main_device = torch.device("cpu")
self.vae_device = torch.device("cpu")
self.move_to_device(main_device_str=target_main_device_str, vae_device_str=target_vae_device_str)
self._apply_precision_policy()
vae_manager_singleton.attach_pipeline(self.pipeline, device=self.vae_device, autocast_dtype=self.runtime_autocast_dtype)
logging.info(f"VideoService ready. Startup time: {time.perf_counter()-t0:.2f}s")
def _load_config(self) -> Dict:
"""Loads the YAML configuration file."""
config_path = LTX_VIDEO_REPO_DIR / "configs" / "ltxv-13b-0.9.8-distilled-fp8.yaml"
logging.info(f"Loading config from: {config_path}")
with open(config_path, "r") as file:
return yaml.safe_load(file)
def _resolve_model_paths_from_cache(self):
"""Finds the absolute paths to model files in the cache and updates the in-memory config."""
logging.info("Resolving model paths from Hugging Face cache...")
cache_dir = os.environ.get("HF_HOME")
try:
main_ckpt_path = hf_hub_download(repo_id=LTX_REPO_ID, filename=self.config["checkpoint_path"], cache_dir=cache_dir)
self.config["checkpoint_path"] = main_ckpt_path
logging.info(f" -> Main checkpoint resolved to: {main_ckpt_path}")
if self.config.get("spatial_upscaler_model_path"):
upscaler_path = hf_hub_download(repo_id=LTX_REPO_ID, filename=self.config["spatial_upscaler_model_path"], cache_dir=cache_dir)
self.config["spatial_upscaler_model_path"] = upscaler_path
logging.info(f" -> Spatial upscaler resolved to: {upscaler_path}")
except Exception as e:
logging.critical(f"Failed to resolve model paths. Ensure setup.py ran correctly. Error: {e}", exc_info=True)
sys.exit(1)
@log_function_io
def move_to_device(self, main_device_str: str, vae_device_str: str):
"""Moves pipeline components to their designated target devices."""
target_main_device = torch.device(main_device_str)
target_vae_device = torch.device(vae_device_str)
logging.info(f"Moving LTX models -> Main Pipeline: {target_main_device}, VAE: {target_vae_device}")
self.main_device = target_main_device
self.pipeline.to(self.main_device)
self.vae_device = target_vae_device
self.pipeline.vae.to(self.vae_device)
if self.latent_upsampler: self.latent_upsampler.to(self.main_device)
logging.info("LTX models successfully moved to target devices.")
def move_to_cpu(self):
"""Moves all LTX components to CPU to free VRAM for other services."""
self.move_to_device(main_device_str="cpu", vae_device_str="cpu")
if torch.cuda.is_available(): torch.cuda.empty_cache()
def finalize(self):
"""Cleans up GPU memory after a generation task."""
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
try: torch.cuda.ipc_collect();
except Exception: pass
# ==========================================================================
# --- LÓGICA DE NEGÓCIO: ORQUESTRADOR PÚBLICO UNIFICADO ---
# ==========================================================================
@log_function_io
def generate_low_resolution(self, prompt: str, **kwargs) -> Tuple[Optional[str], Optional[str], Optional[int]]:
"""
[UNIFIED ORCHESTRATOR] Generates a low-resolution video from a prompt.
Handles both single-line and multi-line prompts transparently.
"""
logging.info("Starting unified low-resolution generation (random seed)...")
used_seed = self._get_random_seed()
seed_everything(used_seed)
logging.info(f"Using randomly generated seed: {used_seed}")
prompt_list = [p.strip() for p in prompt.splitlines() if p.strip()]
if not prompt_list: raise ValueError("Prompt is empty or contains no valid lines.")
is_narrative = len(prompt_list) > 1
logging.info(f"Generation mode detected: {'Narrative' if is_narrative else 'Simple'} ({len(prompt_list)} scene(s)).")
num_chunks = len(prompt_list)
total_frames = self._calculate_aligned_frames(kwargs.get("duration", 4.0))
frames_per_chunk = max(FRAMES_ALIGNMENT, (total_frames // num_chunks // FRAMES_ALIGNMENT) * FRAMES_ALIGNMENT)
# Overlap must be N*8+1 frames. 9 is the smallest practical value.
overlap_frames = 9 if is_narrative else 0
if is_narrative:
logging.info(f"Narrative mode: Using overlap of {overlap_frames} frames between chunks.")
temp_latent_paths = []
overlap_condition_item = None
try:
for i, chunk_prompt in enumerate(prompt_list):
logging.info(f"Processing scene {i+1}/{num_chunks}: '{chunk_prompt[:50]}...'")
if i < num_chunks - 1:
current_frames_base = frames_per_chunk
else: # Last chunk takes all remaining frames
processed_frames_base = (num_chunks - 1) * frames_per_chunk
current_frames_base = total_frames - processed_frames_base
current_frames = current_frames_base + (overlap_frames if i > 0 else 0)
# Ensure final frame count for generation is N*8+1
current_frames = self._align(current_frames, alignment_rule='n*8+1')
current_conditions = kwargs.get("initial_conditions", []) if i == 0 else []
if overlap_condition_item:
current_conditions.append(overlap_condition_item)
chunk_latents = self._generate_single_chunk_low(
prompt=chunk_prompt, num_frames=current_frames, seed=used_seed + i,
conditioning_items=current_conditions, **kwargs
)
if chunk_latents is None: raise RuntimeError(f"Failed to generate latents for scene {i+1}.")
if is_narrative and i < num_chunks - 1:
# 1. Criar tensor overlap latente
overlap_latents = chunk_latents[:, :, -overlap_frames:, :, :].clone()
logging.info(f"Criado overlap latente com shape: {list(overlap_latents.shape)}")
# 2. DECODIFICA o latente de volta para um tensor de PIXEL
logging.info("Decodificando latente de overlap para tensor de pixel...")
overlap_pixel_tensor = vae_manager_singleton.decode(
overlap_latents,
decode_timestep=float(self.config.get("decode_timestep", 0.05))
)
# O resultado de decode() está na CPU, no formato (B, C, F, H, W) e [0, 1]
# Precisamos normalizá-lo para [-1, 1] que é o que o pipeline espera.
overlap_pixel_tensor_normalized = (overlap_pixel_tensor * 2.0) - 1.0
logging.info(f"Tensor de pixel de overlap criado com shape: {list(overlap_pixel_tensor_normalized.shape)}")
# 3. Cria o ConditioningItem com o TENSOR DE PIXEL, não com o latente.
overlap_condition_item = ConditioningItem(
media_item=overlap_pixel_tensor_normalized,
media_frame_number=0,conditioning_strength=1.0
)
if i > 0:
chunk_latents = chunk_latents[:, :, overlap_frames:, :, :]
chunk_path = RESULTS_DIR / f"temp_chunk_{i}_{used_seed}.pt"
torch.save(chunk_latents.cpu(), chunk_path)
temp_latent_paths.append(chunk_path)
base_filename = "narrative_video" if is_narrative else "single_video"
return self._finalize_generation(temp_latent_paths, base_filename, used_seed)
except Exception as e:
logging.error(f"Error during unified generation: {e}", exc_info=True)
return None, None, None
finally:
for path in temp_latent_paths:
if path.exists(): path.unlink()
self.finalize()
# ==========================================================================
# --- UNIDADES DE TRABALHO E HELPERS INTERNOS ---
# ==========================================================================
# --- NOVA FUNÇÃO DE LOG DEDICADA ---
def _log_conditioning_items(self, items: List[ConditioningItem]):
"""
Logs detailed information about a list of ConditioningItem objects.
This is a dedicated debug helper function.
"""
# Só imprime o log se o nível de logging for DEBUG
if logging.getLogger().isEnabledFor(logging.INFO):
log_str = ["\n" + "="*25 + " INFO: Conditioning Items " + "="*25]
if not items:
log_str.append(" -> Lista de conditioning_items está vazia.")
else:
for i, item in enumerate(items):
if hasattr(item, 'media_item') and isinstance(item.media_item, torch.Tensor):
t = item.media_item
log_str.append(
f" -> Item [{i}]: "
f"Tensor(shape={list(t.shape)}, "
f"device='{t.device}', "
f"dtype={t.dtype}), "
f"Target Frame = {item.media_frame_number}, "
f"Strength = {item.conditioning_strength:.2f}"
)
else:
log_str.append(f" -> Item [{i}]: Não contém um tensor válido.")
log_str.append("="*75 + "\n")
# Usa o logger de debug para imprimir a mensagem completa
logging.info("\n".join(log_str))
@log_function_io
def _generate_single_chunk_low(self, **kwargs) -> Optional[torch.Tensor]:
"""[WORKER] Calls the pipeline to generate a single chunk of latents."""
height_padded, width_padded = (self._align(d) for d in (kwargs['height'], kwargs['width']))
downscale_factor = self.config.get("downscale_factor", 0.6666666)
vae_scale_factor = self.pipeline.vae_scale_factor
downscaled_height = self._align(int(height_padded * downscale_factor), vae_scale_factor)
downscaled_width = self._align(int(width_padded * downscale_factor), vae_scale_factor)
# 1. Começa com a configuração padrão
first_pass_config = self.config.get("first_pass", {}).copy()
# 2. Aplica os overrides da UI, se existirem
if kwargs.get("ltx_configs_override"):
self._apply_ui_overrides(first_pass_config, kwargs.get("ltx_configs_override"))
# 3. Monta o dicionário de argumentos SEM conditioning_items primeiro
pipeline_kwargs = {
"prompt": kwargs['prompt'],
"negative_prompt": kwargs['negative_prompt'],
"height": downscaled_height,
"width": downscaled_width,
"num_frames": kwargs['num_frames'],
"frame_rate": int(DEFAULT_FPS),
"generator": torch.Generator(device=self.main_device).manual_seed(kwargs['seed']),
"output_type": "latent",
#"conditioning_items": conditioning_items if conditioning_items else None,
"media_items": None,
"decode_timestep": self.config["decode_timestep"],
"decode_noise_scale": self.config["decode_noise_scale"],
"stochastic_sampling": self.config["stochastic_sampling"],
"image_cond_noise_scale": 0.01,
"is_video": True,
"vae_per_channel_normalize": True,
"mixed_precision": (self.config["precision"] == "mixed_precision"),
"offload_to_cpu": False,
"enhance_prompt": False,
#"skip_layer_strategy": SkipLayerStrategy.AttentionValues,
**first_pass_config
}
# --- Bloco de Logging para Depuração ---
# 4. Loga os argumentos do pipeline (sem os tensores de condição)
logging.info(f"\n[Info] Pipeline Arguments (BASE):\n {json.dumps(pipeline_kwargs, indent=2, default=str)}\n")
# Loga os conditioning_items separadamente com a nossa função helper
conditioning_items_list = kwargs.get('conditioning_items')
self._log_conditioning_items(conditioning_items_list)
# --- Fim do Bloco de Logging ---
# 5. Adiciona os conditioning_items ao dicionário
pipeline_kwargs['conditioning_items'] = conditioning_items_list
# 6. Executa o pipeline com o dicionário completo
with torch.autocast(device_type=self.main_device.type, dtype=self.runtime_autocast_dtype, enabled="cuda" in self.main_device.type):
latents_raw = self.pipeline(**pipeline_kwargs).images
return latents_raw.to(self.main_device)
@log_function_io
def _finalize_generation(self, temp_latent_paths: List[Path], base_filename: str, seed: int) -> Tuple[str, str, int]:
"""Consolidates latents, decodes them to video, and saves final artifacts."""
logging.info("Finalizing generation: decoding latents to video.")
all_tensors_cpu = [torch.load(p) for p in temp_latent_paths]
final_latents = torch.cat(all_tensors_cpu, dim=2)
final_latents_path = RESULTS_DIR / f"latents_{base_filename}_{seed}.pt"
torch.save(final_latents, final_latents_path)
logging.info(f"Final latents saved to: {final_latents_path}")
pixel_tensor = vae_manager_singleton.decode(
final_latents, decode_timestep=float(self.config.get("decode_timestep", 0.05))
)
video_path = self._save_and_log_video(pixel_tensor, f"{base_filename}_{seed}")
return str(video_path), str(final_latents_path), seed
@log_function_io
def prepare_condition_items(self, items_list: List, height: int, width: int, num_frames: int) -> List[ConditioningItem]:
"""
[CORRIGIDO] Prepara ConditioningItems, garantindo que o tensor final
resida no dispositivo principal do pipeline (main_device).
"""
if not items_list: return []
height_padded, width_padded = self._align(height), self._align(width)
padding_values = calculate_padding(height, width, height_padded, width_padded)
conditioning_items = []
for media_item, frame, weight in items_list:
final_tensor = None
if isinstance(media_item, str):
# 1. Carrega a imagem. A função pode usar o VAE, então ela pode
# retornar um tensor em qualquer dispositivo.
tensor = load_image_to_tensor_with_resize_and_crop(media_item, height, width)
# 2. Aplica padding.
tensor = torch.nn.functional.pad(tensor, padding_values)
# 3. GARANTE que o tensor final esteja no dispositivo principal.
final_tensor = tensor.to(self.main_device, dtype=self.runtime_autocast_dtype)
elif isinstance(media_item, torch.Tensor):
# Se já for um tensor (ex: overlap), apenas garante que ele está no dispositivo principal.
final_tensor = media_item.to(self.main_device, dtype=self.runtime_autocast_dtype)
else:
logging.warning(f"Unknown conditioning media type: {type(media_item)}. Skipping.")
continue
safe_frame = max(0, min(int(frame), num_frames - 1))
conditioning_items.append(ConditioningItem(final_tensor, safe_frame, float(weight)))
self._log_conditioning_items(conditioning_items)
return conditioning_items
def _apply_ui_overrides(self, config_dict: Dict, overrides: Dict):
"""Applies advanced settings from the UI to a config dictionary."""
# Override step counts
for key in ["num_inference_steps", "skip_initial_inference_steps", "skip_final_inference_steps"]:
ui_value = overrides.get(key)
if ui_value and ui_value > 0:
config_dict[key] = ui_value
logging.info(f"Override: '{key}' set to {ui_value} by UI.")
def _save_and_log_video(self, pixel_tensor: torch.Tensor, base_filename: str) -> Path:
with tempfile.TemporaryDirectory() as temp_dir:
temp_path = os.path.join(temp_dir, f"{base_filename}.mp4")
video_encode_tool_singleton.save_video_from_tensor(pixel_tensor, temp_path, fps=DEFAULT_FPS)
final_path = RESULTS_DIR / f"{base_filename}.mp4"
shutil.move(temp_path, final_path)
logging.info(f"Video saved successfully to: {final_path}")
return final_path
def _apply_precision_policy(self):
precision = str(self.config.get("precision", "bfloat16")).lower()
if precision in ["float8_e4m3fn", "bfloat16"]: self.runtime_autocast_dtype = torch.bfloat16
elif precision == "mixed_precision": self.runtime_autocast_dtype = torch.float16
else: self.runtime_autocast_dtype = torch.float32
logging.info(f"Runtime precision policy set for autocast: {self.runtime_autocast_dtype}")
def _align(self, dim: int, alignment: int = FRAMES_ALIGNMENT, alignment_rule: str = 'default') -> int:
"""Aligns a dimension to the nearest multiple of `alignment`."""
if alignment_rule == 'n*8+1':
return ((dim - 1) // alignment) * alignment + 1
return ((dim - 1) // alignment + 1) * alignment
def _calculate_aligned_frames(self, duration_s: float, min_frames: int = 1) -> int:
num_frames = int(round(duration_s * DEFAULT_FPS))
# Para a duração total, sempre arredondamos para cima para o múltiplo de 8 mais próximo
aligned_frames = self._align(num_frames, alignment=FRAMES_ALIGNMENT)
return max(aligned_frames, min_frames)
def _get_random_seed(self) -> int:
"""Always generates and returns a new random seed."""
return random.randint(0, 2**32 - 1)
# ==============================================================================
# --- INSTANCIAÇÃO SINGLETON ---
# ==============================================================================
try:
video_generation_service = VideoService()
logging.info("Global VideoService orchestrator instance created successfully.")
except Exception as e:
logging.critical(f"Failed to initialize VideoService: {e}", exc_info=True)
sys.exit(1) |