File size: 22,726 Bytes
ebef213
 
 
 
d7c623e
ebef213
 
9b05869
ebef213
 
 
 
 
 
 
 
 
 
 
 
3b5ff37
 
ebef213
3b5ff37
d7c623e
ebef213
 
 
 
 
 
9b05869
ebef213
 
 
 
 
 
 
 
 
 
 
 
 
 
9b05869
ebef213
 
 
 
 
 
 
 
 
 
 
 
 
 
3f8bf2e
ebef213
3f8bf2e
d795566
3b5ff37
ebef213
3b5ff37
 
71052e8
ebef213
 
 
 
 
 
 
 
 
3b5ff37
ebef213
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b5ff37
ebef213
 
3b5ff37
ebef213
 
 
 
 
 
 
 
 
 
 
3b5ff37
ebef213
 
 
 
 
 
 
 
 
 
 
 
 
3b5ff37
ebef213
c4db7b7
 
3b5ff37
ebef213
 
 
 
 
 
 
c4db7b7
ebef213
c4db7b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebef213
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
761ae64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebef213
 
 
 
 
 
 
 
 
d17f8fd
fabe3ab
ebef213
fabe3ab
 
ebef213
fabe3ab
ebef213
fabe3ab
ebef213
fabe3ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebef213
1947e99
fabe3ab
 
 
 
 
 
 
 
1947e99
fabe3ab
 
7c1bfd4
fabe3ab
ebef213
1947e99
7c1bfd4
ebef213
3b5ff37
fabe3ab
ebef213
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b5ff37
9ae4c2d
4cc29be
9ae4c2d
4cc29be
 
9ae4c2d
 
 
 
 
 
 
4cc29be
9ae4c2d
4cc29be
 
9ae4c2d
4cc29be
9ae4c2d
4cc29be
 
 
9ae4c2d
4cc29be
 
9ae4c2d
 
 
 
 
4cc29be
 
9ae4c2d
 
 
ebef213
e9d1b13
ebef213
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b05869
ebef213
 
 
 
 
 
3b5ff37
ebef213
 
 
 
 
9b05869
ebef213
 
 
 
 
 
 
 
 
3b5ff37
 
ebef213
3b5ff37
ebef213
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
# FILE: api/ltx_server_refactored_complete.py
# DESCRIPTION: Final orchestrator for LTX-Video generation.
# This version includes the fix for the narrative generation overlap bug and
# consolidates all previous refactoring and debugging improvements.

import gc
import json
import logging
import os
import shutil
import sys
import tempfile
import time
from pathlib import Path
from typing import Dict, List, Optional, Tuple
import random
import torch
import yaml
import numpy as np
from huggingface_hub import hf_hub_download

# ==============================================================================
# --- SETUP E IMPORTAÇÕES DO PROJETO ---
# ==============================================================================

# Configuração de logging e supressão de warnings
import warnings
warnings.filterwarnings("ignore")
logging.getLogger("huggingface_hub").setLevel(logging.ERROR)
log_level = os.environ.get("ADUC_LOG_LEVEL", "INFO").upper()
logging.basicConfig(level=log_level, format='[%(levelname)s] [%(name)s] %(message)s')

# --- Constantes de Configuração ---
DEPS_DIR = Path("/data")
LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video"
RESULTS_DIR = Path("/app/output")
DEFAULT_FPS = 24.0
FRAMES_ALIGNMENT = 8
LTX_REPO_ID = "Lightricks/LTX-Video"

# Garante que a biblioteca LTX-Video seja importável
def add_deps_to_path():
    repo_path = str(LTX_VIDEO_REPO_DIR.resolve())
    if repo_path not in sys.path:
        sys.path.insert(0, repo_path)
        logging.info(f"[ltx_server] LTX-Video repository added to sys.path: {repo_path}")

add_deps_to_path()

# --- Módulos da nossa Arquitetura ---
try:
    from api.gpu_manager import gpu_manager
    from managers.vae_manager import vae_manager_singleton
    from tools.video_encode_tool import video_encode_tool_singleton
    from api.ltx.ltx_utils import (
        build_ltx_pipeline_on_cpu,
        seed_everything,
        load_image_to_tensor_with_resize_and_crop,
        ConditioningItem,
    )
    from api.utils.debug_utils import log_function_io
except ImportError as e:
    logging.critical(f"A crucial import from the local API/architecture failed. Error: {e}", exc_info=True)
    sys.exit(1)

# ==============================================================================
# --- FUNÇÕES AUXILIARES DO ORQUESTRADOR ---
# ==============================================================================

@log_function_io
def calculate_padding(orig_h: int, orig_w: int, target_h: int, target_w: int) -> Tuple[int, int, int, int]:
    """Calculates symmetric padding required to meet target dimensions."""
    pad_h = target_h - orig_h
    pad_w = target_w - orig_w
    pad_top = pad_h // 2
    pad_bottom = pad_h - pad_top
    pad_left = pad_w // 2
    pad_right = pad_w - pad_left
    return (pad_left, pad_right, pad_top, pad_bottom)

# ==============================================================================
# --- CLASSE DE SERVIÇO (O ORQUESTRADOR) ---
# ==============================================================================

class VideoService:
    """
    Orchestrates the high-level logic of video generation, delegating low-level
    tasks to specialized managers and utility modules.
    """

    @log_function_io
    def __init__(self):
        t0 = time.perf_counter()
        logging.info("Initializing VideoService Orchestrator...")
        RESULTS_DIR.mkdir(parents=True, exist_ok=True)

        target_main_device_str = str(gpu_manager.get_ltx_device())
        target_vae_device_str = str(gpu_manager.get_ltx_vae_device())
        logging.info(f"LTX allocated to devices: Main='{target_main_device_str}', VAE='{target_vae_device_str}'")

        self.config = self._load_config()
        self._resolve_model_paths_from_cache()

        self.pipeline, self.latent_upsampler = build_ltx_pipeline_on_cpu(self.config)

        self.main_device = torch.device("cpu")
        self.vae_device = torch.device("cpu")
        self.move_to_device(main_device_str=target_main_device_str, vae_device_str=target_vae_device_str)

        self._apply_precision_policy()
        vae_manager_singleton.attach_pipeline(self.pipeline, device=self.vae_device, autocast_dtype=self.runtime_autocast_dtype)
        logging.info(f"VideoService ready. Startup time: {time.perf_counter()-t0:.2f}s")

    def _load_config(self) -> Dict:
        """Loads the YAML configuration file."""
        config_path = LTX_VIDEO_REPO_DIR / "configs" / "ltxv-13b-0.9.8-distilled-fp8.yaml"
        logging.info(f"Loading config from: {config_path}")
        with open(config_path, "r") as file:
            return yaml.safe_load(file)

    def _resolve_model_paths_from_cache(self):
        """Finds the absolute paths to model files in the cache and updates the in-memory config."""
        logging.info("Resolving model paths from Hugging Face cache...")
        cache_dir = os.environ.get("HF_HOME")
        try:
            main_ckpt_path = hf_hub_download(repo_id=LTX_REPO_ID, filename=self.config["checkpoint_path"], cache_dir=cache_dir)
            self.config["checkpoint_path"] = main_ckpt_path
            logging.info(f"  -> Main checkpoint resolved to: {main_ckpt_path}")

            if self.config.get("spatial_upscaler_model_path"):
                upscaler_path = hf_hub_download(repo_id=LTX_REPO_ID, filename=self.config["spatial_upscaler_model_path"], cache_dir=cache_dir)
                self.config["spatial_upscaler_model_path"] = upscaler_path
                logging.info(f"  -> Spatial upscaler resolved to: {upscaler_path}")
        except Exception as e:
            logging.critical(f"Failed to resolve model paths. Ensure setup.py ran correctly. Error: {e}", exc_info=True)
            sys.exit(1)

    @log_function_io
    def move_to_device(self, main_device_str: str, vae_device_str: str):
        """Moves pipeline components to their designated target devices."""
        target_main_device = torch.device(main_device_str)
        target_vae_device = torch.device(vae_device_str)
        logging.info(f"Moving LTX models -> Main Pipeline: {target_main_device}, VAE: {target_vae_device}")

        self.main_device = target_main_device
        self.pipeline.to(self.main_device)
        self.vae_device = target_vae_device
        self.pipeline.vae.to(self.vae_device)
        if self.latent_upsampler: self.latent_upsampler.to(self.main_device)
        logging.info("LTX models successfully moved to target devices.")

    def move_to_cpu(self):
        """Moves all LTX components to CPU to free VRAM for other services."""
        self.move_to_device(main_device_str="cpu", vae_device_str="cpu")
        if torch.cuda.is_available(): torch.cuda.empty_cache()

    def finalize(self):
        """Cleans up GPU memory after a generation task."""
        gc.collect()
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
            try: torch.cuda.ipc_collect();
            except Exception: pass

    # ==========================================================================
    # --- LÓGICA DE NEGÓCIO: ORQUESTRADOR PÚBLICO UNIFICADO ---
    # ==========================================================================

    @log_function_io
    def generate_low_resolution(self, prompt: str, **kwargs) -> Tuple[Optional[str], Optional[str], Optional[int]]:
        """
        [UNIFIED ORCHESTRATOR] Generates a low-resolution video from a prompt.
        Handles both single-line and multi-line prompts transparently.
        """
        logging.info("Starting unified low-resolution generation (random seed)...")
        used_seed = self._get_random_seed()
        seed_everything(used_seed)
        logging.info(f"Using randomly generated seed: {used_seed}")

        prompt_list = [p.strip() for p in prompt.splitlines() if p.strip()]
        if not prompt_list: raise ValueError("Prompt is empty or contains no valid lines.")
        
        is_narrative = len(prompt_list) > 1
        logging.info(f"Generation mode detected: {'Narrative' if is_narrative else 'Simple'} ({len(prompt_list)} scene(s)).")

        num_chunks = len(prompt_list)
        total_frames = self._calculate_aligned_frames(kwargs.get("duration", 4.0))
        frames_per_chunk = max(FRAMES_ALIGNMENT, (total_frames // num_chunks // FRAMES_ALIGNMENT) * FRAMES_ALIGNMENT)
        
        # Overlap must be N*8+1 frames. 9 is the smallest practical value.
        overlap_frames = 9 if is_narrative else 0
        if is_narrative:
            logging.info(f"Narrative mode: Using overlap of {overlap_frames} frames between chunks.")
        
        temp_latent_paths = []
        overlap_condition_item = None
        
        try:
            for i, chunk_prompt in enumerate(prompt_list):
                logging.info(f"Processing scene {i+1}/{num_chunks}: '{chunk_prompt[:50]}...'")
                
                if i < num_chunks - 1:
                    current_frames_base = frames_per_chunk
                else: # Last chunk takes all remaining frames
                    processed_frames_base = (num_chunks - 1) * frames_per_chunk
                    current_frames_base = total_frames - processed_frames_base
                
                current_frames = current_frames_base + (overlap_frames if i > 0 else 0)
                # Ensure final frame count for generation is N*8+1
                current_frames = self._align(current_frames, alignment_rule='n*8+1')

                current_conditions = kwargs.get("initial_conditions", []) if i == 0 else []
                if overlap_condition_item: 
                    current_conditions.append(overlap_condition_item)

                chunk_latents = self._generate_single_chunk_low(
                    prompt=chunk_prompt, num_frames=current_frames, seed=used_seed + i,
                    conditioning_items=current_conditions, **kwargs
                )
                if chunk_latents is None: raise RuntimeError(f"Failed to generate latents for scene {i+1}.")

                if is_narrative and i < num_chunks - 1:
                    # 1. Criar tensor overlap latente
                    overlap_latents = chunk_latents[:, :, -overlap_frames:, :, :].clone()
                    logging.info(f"Criado overlap latente com shape: {list(overlap_latents.shape)}")

                    # 2. DECODIFICA o latente de volta para um tensor de PIXEL
                    logging.info("Decodificando latente de overlap para tensor de pixel...")
                    overlap_pixel_tensor = vae_manager_singleton.decode(
                        overlap_latents,
                        decode_timestep=float(self.config.get("decode_timestep", 0.05))
                    )
                    # O resultado de decode() está na CPU, no formato (B, C, F, H, W) e [0, 1]
                    # Precisamos normalizá-lo para [-1, 1] que é o que o pipeline espera.
                    overlap_pixel_tensor_normalized = (overlap_pixel_tensor * 2.0) - 1.0
                    logging.info(f"Tensor de pixel de overlap criado com shape: {list(overlap_pixel_tensor_normalized.shape)}")
                    
                    # 3. Cria o ConditioningItem com o TENSOR DE PIXEL, não com o latente.
                    overlap_condition_item = ConditioningItem(
                        media_item=overlap_pixel_tensor_normalized, 
                        media_frame_number=0,conditioning_strength=1.0
                    )
                    
                                
                if i > 0:
                    chunk_latents = chunk_latents[:, :, overlap_frames:, :, :]
                
                chunk_path = RESULTS_DIR / f"temp_chunk_{i}_{used_seed}.pt"
                torch.save(chunk_latents.cpu(), chunk_path)
                temp_latent_paths.append(chunk_path)
            
            base_filename = "narrative_video" if is_narrative else "single_video"
            return self._finalize_generation(temp_latent_paths, base_filename, used_seed)
        except Exception as e:
            logging.error(f"Error during unified generation: {e}", exc_info=True)
            return None, None, None
        finally:
            for path in temp_latent_paths:
                if path.exists(): path.unlink()
            self.finalize()

    # ==========================================================================
    # --- UNIDADES DE TRABALHO E HELPERS INTERNOS ---
    # ==========================================================================

    # --- NOVA FUNÇÃO DE LOG DEDICADA ---
    def _log_conditioning_items(self, items: List[ConditioningItem]):
        """
        Logs detailed information about a list of ConditioningItem objects.
        This is a dedicated debug helper function.
        """
        # Só imprime o log se o nível de logging for DEBUG
        if logging.getLogger().isEnabledFor(logging.INFO):
            log_str = ["\n" + "="*25 + " INFO: Conditioning Items " + "="*25]
            if not items:
                log_str.append("  -> Lista de conditioning_items está vazia.")
            else:
                for i, item in enumerate(items):
                    if hasattr(item, 'media_item') and isinstance(item.media_item, torch.Tensor):
                        t = item.media_item
                        log_str.append(
                            f"  -> Item [{i}]: "
                            f"Tensor(shape={list(t.shape)}, "
                            f"device='{t.device}', "
                            f"dtype={t.dtype}), "
                            f"Target Frame = {item.media_frame_number}, "
                            f"Strength = {item.conditioning_strength:.2f}"
                        )
                    else:
                        log_str.append(f"  -> Item [{i}]: Não contém um tensor válido.")
            log_str.append("="*75 + "\n")
            
            # Usa o logger de debug para imprimir a mensagem completa
            logging.info("\n".join(log_str))


    @log_function_io
    def _generate_single_chunk_low(self, **kwargs) -> Optional[torch.Tensor]:
        """[WORKER] Calls the pipeline to generate a single chunk of latents."""
        height_padded, width_padded = (self._align(d) for d in (kwargs['height'], kwargs['width']))
        downscale_factor = self.config.get("downscale_factor", 0.6666666)
        vae_scale_factor = self.pipeline.vae_scale_factor
        downscaled_height = self._align(int(height_padded * downscale_factor), vae_scale_factor)
        downscaled_width = self._align(int(width_padded * downscale_factor), vae_scale_factor)

        
        # 1. Começa com a configuração padrão
        first_pass_config = self.config.get("first_pass", {}).copy()
        
        # 2. Aplica os overrides da UI, se existirem
        if kwargs.get("ltx_configs_override"):
            self._apply_ui_overrides(first_pass_config, kwargs.get("ltx_configs_override"))

        # 3. Monta o dicionário de argumentos SEM conditioning_items primeiro
        pipeline_kwargs = {
            "prompt": kwargs['prompt'],
            "negative_prompt": kwargs['negative_prompt'],
            "height": downscaled_height,
            "width": downscaled_width,
            "num_frames": kwargs['num_frames'],
            "frame_rate": int(DEFAULT_FPS),
            "generator": torch.Generator(device=self.main_device).manual_seed(kwargs['seed']),
            "output_type": "latent",
            #"conditioning_items": conditioning_items if conditioning_items else None,
            "media_items": None,
            "decode_timestep": self.config["decode_timestep"],
            "decode_noise_scale": self.config["decode_noise_scale"],
            "stochastic_sampling": self.config["stochastic_sampling"],
            "image_cond_noise_scale": 0.01,
            "is_video": True,
            "vae_per_channel_normalize": True,
            "mixed_precision": (self.config["precision"] == "mixed_precision"),
            "offload_to_cpu": False,
            "enhance_prompt": False,
            #"skip_layer_strategy": SkipLayerStrategy.AttentionValues,
            **first_pass_config
        }
        
        # --- Bloco de Logging para Depuração ---
        # 4. Loga os argumentos do pipeline (sem os tensores de condição)
        logging.info(f"\n[Info] Pipeline Arguments (BASE):\n {json.dumps(pipeline_kwargs, indent=2, default=str)}\n")
        
        # Loga os conditioning_items separadamente com a nossa função helper
        conditioning_items_list = kwargs.get('conditioning_items')
        self._log_conditioning_items(conditioning_items_list)
        # --- Fim do Bloco de Logging ---

        # 5. Adiciona os conditioning_items ao dicionário
        pipeline_kwargs['conditioning_items'] = conditioning_items_list
        
        # 6. Executa o pipeline com o dicionário completo
        with torch.autocast(device_type=self.main_device.type, dtype=self.runtime_autocast_dtype, enabled="cuda" in self.main_device.type):
            latents_raw = self.pipeline(**pipeline_kwargs).images
        
        return latents_raw.to(self.main_device)

    
    @log_function_io
    def _finalize_generation(self, temp_latent_paths: List[Path], base_filename: str, seed: int) -> Tuple[str, str, int]:
        """Consolidates latents, decodes them to video, and saves final artifacts."""
        logging.info("Finalizing generation: decoding latents to video.")
        all_tensors_cpu = [torch.load(p) for p in temp_latent_paths]
        final_latents = torch.cat(all_tensors_cpu, dim=2)
        
        final_latents_path = RESULTS_DIR / f"latents_{base_filename}_{seed}.pt"
        torch.save(final_latents, final_latents_path)
        logging.info(f"Final latents saved to: {final_latents_path}")
        
        pixel_tensor = vae_manager_singleton.decode(
            final_latents, decode_timestep=float(self.config.get("decode_timestep", 0.05))
        )
        video_path = self._save_and_log_video(pixel_tensor, f"{base_filename}_{seed}")
        return str(video_path), str(final_latents_path), seed

    @log_function_io
    def prepare_condition_items(self, items_list: List, height: int, width: int, num_frames: int) -> List[ConditioningItem]:
        """
        [CORRIGIDO] Prepara ConditioningItems, garantindo que o tensor final
        resida no dispositivo principal do pipeline (main_device).
        """
        if not items_list: return []
        height_padded, width_padded = self._align(height), self._align(width)
        padding_values = calculate_padding(height, width, height_padded, width_padded)
        
        conditioning_items = []
        for media_item, frame, weight in items_list:
            final_tensor = None
            if isinstance(media_item, str):
                # 1. Carrega a imagem. A função pode usar o VAE, então ela pode
                #    retornar um tensor em qualquer dispositivo.
                tensor = load_image_to_tensor_with_resize_and_crop(media_item, height, width)
                # 2. Aplica padding.
                tensor = torch.nn.functional.pad(tensor, padding_values)
                # 3. GARANTE que o tensor final esteja no dispositivo principal.
                final_tensor = tensor.to(self.main_device, dtype=self.runtime_autocast_dtype)

            elif isinstance(media_item, torch.Tensor):
                # Se já for um tensor (ex: overlap), apenas garante que ele está no dispositivo principal.
                final_tensor = media_item.to(self.main_device, dtype=self.runtime_autocast_dtype)
            else:
                logging.warning(f"Unknown conditioning media type: {type(media_item)}. Skipping.")
                continue
            
            safe_frame = max(0, min(int(frame), num_frames - 1))
            conditioning_items.append(ConditioningItem(final_tensor, safe_frame, float(weight)))

        self._log_conditioning_items(conditioning_items)
        return conditioning_items
    

    def _apply_ui_overrides(self, config_dict: Dict, overrides: Dict):
        """Applies advanced settings from the UI to a config dictionary."""
        # Override step counts
        for key in ["num_inference_steps", "skip_initial_inference_steps", "skip_final_inference_steps"]:
            ui_value = overrides.get(key)
            if ui_value and ui_value > 0:
                config_dict[key] = ui_value
                logging.info(f"Override: '{key}' set to {ui_value} by UI.")
        
    def _save_and_log_video(self, pixel_tensor: torch.Tensor, base_filename: str) -> Path:
        with tempfile.TemporaryDirectory() as temp_dir:
            temp_path = os.path.join(temp_dir, f"{base_filename}.mp4")
            video_encode_tool_singleton.save_video_from_tensor(pixel_tensor, temp_path, fps=DEFAULT_FPS)
            final_path = RESULTS_DIR / f"{base_filename}.mp4"
            shutil.move(temp_path, final_path)
            logging.info(f"Video saved successfully to: {final_path}")
            return final_path
    
    def _apply_precision_policy(self):
        precision = str(self.config.get("precision", "bfloat16")).lower()
        if precision in ["float8_e4m3fn", "bfloat16"]: self.runtime_autocast_dtype = torch.bfloat16
        elif precision == "mixed_precision": self.runtime_autocast_dtype = torch.float16
        else: self.runtime_autocast_dtype = torch.float32
        logging.info(f"Runtime precision policy set for autocast: {self.runtime_autocast_dtype}")

    def _align(self, dim: int, alignment: int = FRAMES_ALIGNMENT, alignment_rule: str = 'default') -> int:
        """Aligns a dimension to the nearest multiple of `alignment`."""
        if alignment_rule == 'n*8+1':
             return ((dim - 1) // alignment) * alignment + 1
        return ((dim - 1) // alignment + 1) * alignment
    
    def _calculate_aligned_frames(self, duration_s: float, min_frames: int = 1) -> int:
        num_frames = int(round(duration_s * DEFAULT_FPS))
        # Para a duração total, sempre arredondamos para cima para o múltiplo de 8 mais próximo
        aligned_frames = self._align(num_frames, alignment=FRAMES_ALIGNMENT)
        return max(aligned_frames, min_frames)

    def _get_random_seed(self) -> int:
        """Always generates and returns a new random seed."""
        return random.randint(0, 2**32 - 1)

# ==============================================================================
# --- INSTANCIAÇÃO SINGLETON ---
# ==============================================================================
try:
    video_generation_service = VideoService()
    logging.info("Global VideoService orchestrator instance created successfully.")
except Exception as e:
    logging.critical(f"Failed to initialize VideoService: {e}", exc_info=True)
    sys.exit(1)