Spaces:
Runtime error
Runtime error
File size: 23,674 Bytes
66937e6 ff176e8 ee4fca1 ff176e8 c6815c0 ff176e8 8967a30 ff176e8 ee4fca1 8967a30 66937e6 ff176e8 962b8c2 66937e6 962b8c2 ff176e8 ee4fca1 66937e6 ee4fca1 912e6dd ff176e8 bddeb26 ee4fca1 ee0b470 ff176e8 ee4fca1 bddeb26 912e6dd bddeb26 ee4fca1 ff176e8 962b8c2 bddeb26 ee4fca1 42ed573 ee4fca1 bddeb26 8967a30 ee4fca1 8967a30 ee4fca1 ff176e8 42ed573 ee4fca1 ff176e8 ee4fca1 912e6dd 8967a30 912e6dd 962b8c2 ee4fca1 ff176e8 42ed573 ee4fca1 ff176e8 912e6dd ff176e8 ee4fca1 912e6dd 8967a30 ff176e8 962b8c2 912e6dd 8967a30 912e6dd ff176e8 ee4fca1 38897a0 962b8c2 ff176e8 962b8c2 38897a0 ff176e8 38897a0 ff176e8 38897a0 ff176e8 c6815c0 42ed573 962b8c2 42ed573 912e6dd 962b8c2 ee4fca1 962b8c2 ff176e8 c6815c0 ee4fca1 ff176e8 962b8c2 ff176e8 ee4fca1 962b8c2 ff176e8 962b8c2 ee4fca1 962b8c2 ee4fca1 ff176e8 ee4fca1 962b8c2 ff176e8 962b8c2 ff176e8 962b8c2 ff176e8 962b8c2 ff176e8 962b8c2 ff176e8 ee4fca1 c6815c0 ee4fca1 ff176e8 962b8c2 42ed573 ee4fca1 bddeb26 42ed573 bddeb26 ee4fca1 bddeb26 ee4fca1 bddeb26 42ed573 c6815c0 ee4fca1 bddeb26 ff176e8 912e6dd bddeb26 962b8c2 912e6dd c6815c0 bddeb26 962b8c2 bddeb26 962b8c2 ee4fca1 bddeb26 ee4fca1 962b8c2 bddeb26 962b8c2 ee4fca1 42ed573 ee4fca1 bddeb26 42ed573 ee4fca1 42ed573 ee4fca1 912e6dd ee4fca1 42ed573 ee4fca1 42ed573 bddeb26 ee4fca1 bddeb26 c6815c0 ee4fca1 bddeb26 ff176e8 c6815c0 962b8c2 ee4fca1 ff176e8 38897a0 ff176e8 ee4fca1 ff176e8 bddeb26 ee4fca1 ff176e8 ee4fca1 ff176e8 ee4fca1 ff176e8 bddeb26 ee4fca1 ff176e8 bddeb26 ff176e8 962b8c2 ee4fca1 ff176e8 ee4fca1 ff176e8 ee4fca1 ff176e8 ee4fca1 ff176e8 c6815c0 ee4fca1 c6815c0 ff176e8 962b8c2 ff176e8 962b8c2 ff176e8 ee4fca1 ff176e8 c6815c0 ee4fca1 c6815c0 ee4fca1 ff176e8 962b8c2 ee4fca1 962b8c2 c6815c0 ee4fca1 ff176e8 962b8c2 ee4fca1 962b8c2 ee4fca1 912e6dd ee4fca1 ff176e8 ee4fca1 ff176e8 962b8c2 ff176e8 ee4fca1 912e6dd ee4fca1 962b8c2 ee4fca1 bddeb26 ee4fca1 bddeb26 962b8c2 ee4fca1 bddeb26 ee4fca1 bddeb26 ff176e8 912e6dd ff176e8 912e6dd 962b8c2 ee4fca1 962b8c2 ee4fca1 c6815c0 ee4fca1 912e6dd ff176e8 ee4fca1 ff176e8 912e6dd ee4fca1 912e6dd ff176e8 bddeb26 ee0b470 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 |
import spaces # MUST be first, before any CUDA-related imports
import gradio as gr
import torch
from diffusers import (
ControlNetModel,
AutoencoderKL,
DPMSolverMultistepScheduler,
LCMScheduler
)
from diffusers.models.attention_processor import AttnProcessor2_0
from insightface.app import FaceAnalysis
from PIL import Image
import numpy as np
import cv2
from huggingface_hub import hf_hub_download
import os
# Import the custom img2img pipeline with InstantID
from pipeline_stable_diffusion_xl_instantid_img2img import StableDiffusionXLInstantIDImg2ImgPipeline, draw_kps
# Import ZoeDetector for better depth maps
from controlnet_aux import ZoeDetector
# Configuration
MODEL_REPO = "primerz/pixagram"
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if device == "cuda" else torch.float32
# LORA trigger word
TRIGGER_WORD = "p1x3l4rt, pixel art"
print(f"Using device: {device}")
print(f"Loading models from: {MODEL_REPO}")
print(f"LORA Trigger Word: {TRIGGER_WORD}")
class RetroArtConverter:
def __init__(self, use_lcm=False):
self.device = device
self.dtype = dtype
self.use_lcm = use_lcm
self.models_loaded = {
'custom_checkpoint': False,
'lora': False,
'instantid': False
}
# Initialize face analysis for InstantID
print("Loading face analysis model (antelopev2)...")
try:
self.face_app = FaceAnalysis(
name='antelopev2',
root='./models/insightface',
providers=['CUDAExecutionProvider', 'CPUExecutionProvider']
)
self.face_app.prepare(ctx_id=0, det_size=(640, 640))
print("โ Face analysis model loaded successfully")
self.face_detection_enabled = True
except Exception as e:
print(f"โ ๏ธ Face detection not available: {e}")
self.face_app = None
self.face_detection_enabled = False
# Load ControlNet for InstantID
print("Loading InstantID ControlNet...")
try:
self.controlnet_instantid = ControlNetModel.from_pretrained(
"InstantX/InstantID",
subfolder="ControlNetModel",
torch_dtype=self.dtype
).to(self.device)
print("โ InstantID ControlNet loaded successfully")
self.instantid_enabled = True
self.models_loaded['instantid'] = True
except Exception as e:
print(f"โ ๏ธ InstantID ControlNet not available: {e}")
self.controlnet_instantid = None
self.instantid_enabled = False
# Load ControlNet for Zoe depth
print("Loading Zoe Depth ControlNet...")
self.controlnet_depth = ControlNetModel.from_pretrained(
"diffusers/controlnet-zoe-depth-sdxl-1.0",
torch_dtype=self.dtype
).to(self.device)
# Load Zoe depth detector (better than DPT)
print("Loading Zoe depth detector...")
try:
self.zoe_detector = ZoeDetector.from_pretrained("lllyasviel/Annotators")
self.zoe_detector.to(self.device)
print("โ Zoe detector loaded successfully")
except Exception as e:
print(f"โ ๏ธ Could not load Zoe detector: {e}")
self.zoe_detector = None
# Determine which controlnets to use
if self.instantid_enabled and self.controlnet_instantid is not None:
controlnets = [self.controlnet_instantid, self.controlnet_depth]
print(f"Initializing with multiple ControlNets: InstantID + Zoe Depth")
else:
controlnets = self.controlnet_depth
print(f"Initializing with single ControlNet: Zoe Depth only")
# Load VAE
print("Loading VAE...")
self.vae = AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix",
torch_dtype=self.dtype
).to(self.device)
# Load SDXL checkpoint from HuggingFace Hub
print("Loading SDXL checkpoint (horizon) from HuggingFace Hub...")
try:
model_path = hf_hub_download(
repo_id=MODEL_REPO,
filename="horizon.safetensors",
repo_type="model"
)
# Use the custom img2img pipeline for better results
self.pipe = StableDiffusionXLInstantIDImg2ImgPipeline.from_single_file(
model_path,
controlnet=controlnets,
vae=self.vae,
torch_dtype=self.dtype,
use_safetensors=True
).to(self.device)
print("โ Custom checkpoint loaded successfully")
self.models_loaded['custom_checkpoint'] = True
except Exception as e:
print(f"โ ๏ธ Could not load custom checkpoint: {e}")
print("Using default SDXL base model")
self.pipe = StableDiffusionXLInstantIDImg2ImgPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
controlnet=controlnets,
vae=self.vae,
torch_dtype=self.dtype,
use_safetensors=True
).to(self.device)
self.models_loaded['custom_checkpoint'] = False
# Load InstantID IP-Adapter
if self.instantid_enabled:
print("Loading InstantID IP-Adapter...")
try:
ip_adapter_path = hf_hub_download(
repo_id="InstantX/InstantID",
filename="ip-adapter.bin"
)
self.pipe.load_ip_adapter_instantid(ip_adapter_path)
self.pipe.set_ip_adapter_scale(0.8)
print("โ InstantID IP-Adapter loaded successfully")
except Exception as e:
print(f"โ ๏ธ Could not load IP-Adapter: {e}")
# Load LORA from HuggingFace Hub
print("Loading LORA (retroart) from HuggingFace Hub...")
try:
lora_path = hf_hub_download(
repo_id=MODEL_REPO,
filename="retroart.safetensors",
repo_type="model"
)
self.pipe.load_lora_weights(lora_path)
print(f"โ LORA loaded successfully")
print(f" Trigger word: '{TRIGGER_WORD}'")
self.models_loaded['lora'] = True
except Exception as e:
print(f"โ ๏ธ Could not load LORA: {e}")
self.models_loaded['lora'] = False
# Choose scheduler based on mode
if use_lcm:
print("Setting up LCM scheduler for fast generation...")
self.pipe.scheduler = LCMScheduler.from_config(
self.pipe.scheduler.config
)
else:
print("Setting up DPMSolverMultistep scheduler with Karras sigmas for quality...")
self.pipe.scheduler = DPMSolverMultistepScheduler.from_config(
self.pipe.scheduler.config,
use_karras_sigmas=True
)
# Enable attention optimizations
self.pipe.unet.set_attn_processor(AttnProcessor2_0())
# Try to enable xformers
if self.device == "cuda":
try:
self.pipe.enable_xformers_memory_efficient_attention()
print("โ xformers enabled")
except Exception as e:
print(f"โ ๏ธ xformers not available: {e}")
# Track controlnet configuration
self.using_multiple_controlnets = isinstance(controlnets, list)
print(f"Pipeline initialized with {'multiple' if self.using_multiple_controlnets else 'single'} ControlNet(s)")
print("\n=== MODEL STATUS ===")
for model, loaded in self.models_loaded.items():
status = "โ LOADED" if loaded else "โ FALLBACK"
print(f"{model}: {status}")
print("===================\n")
print("โ Model initialization complete!")
if use_lcm:
print("\n=== LCM CONFIGURATION ===")
print("Scheduler: LCM")
print("Recommended Steps: 8-12")
print("Recommended CFG: 1.0-1.5")
print("Recommended Strength: 0.6-0.8")
else:
print("\n=== QUALITY CONFIGURATION ===")
print("Scheduler: DPMSolverMultistep + Karras")
print("Recommended Steps: 25-40")
print("Recommended CFG: 5.0-7.5")
print("Recommended Strength: 0.4-0.7")
print(f"LORA Trigger: '{TRIGGER_WORD}'")
print("=========================\n")
def get_depth_map(self, image):
"""Generate depth map from input image using Zoe"""
if self.zoe_detector is not None:
# Use Zoe detector for better depth maps
depth_image = self.zoe_detector(image)
return depth_image
else:
# Fallback to basic conversion
img_array = np.array(image.convert('L'))
depth_colored = cv2.cvtColor(img_array, cv2.COLOR_GRAY2RGB)
return Image.fromarray(depth_colored)
def calculate_optimal_size(self, original_width, original_height):
"""Calculate optimal size from recommended resolutions"""
aspect_ratio = original_width / original_height
# Recommended resolutions for SDXL
recommended_sizes = [
(896, 1152), # Portrait
(1152, 896), # Landscape
(832, 1216), # Tall portrait
(1216, 832), # Wide landscape
(1024, 1024) # Square
]
# Find closest matching aspect ratio
best_match = None
best_diff = float('inf')
for width, height in recommended_sizes:
rec_aspect = width / height
diff = abs(rec_aspect - aspect_ratio)
if diff < best_diff:
best_diff = diff
best_match = (width, height)
# Ensure dimensions are multiples of 8
width, height = best_match
width = (width // 8) * 8
height = (height // 8) * 8
return width, height
def add_trigger_word(self, prompt):
"""Add trigger word to prompt if not present"""
if TRIGGER_WORD.lower() not in prompt.lower():
return f"{TRIGGER_WORD}, {prompt}"
return prompt
def generate_retro_art(
self,
input_image,
prompt="retro game character, vibrant colors, detailed",
negative_prompt="blurry, low quality, ugly, distorted",
num_inference_steps=25,
guidance_scale=5.0,
strength=0.6, # img2img strength
controlnet_conditioning_scale=0.8,
lora_scale=1.0,
face_strength=0.85, # InstantID face strength
depth_control_scale=0.8 # Zoe depth strength
):
"""Generate retro art using img2img pipeline with face keypoints"""
# Add trigger word to prompt
prompt = self.add_trigger_word(prompt)
# Calculate optimal size
original_width, original_height = input_image.size
target_width, target_height = self.calculate_optimal_size(original_width, original_height)
print(f"Resizing from {original_width}x{original_height} to {target_width}x{target_height}")
print(f"Prompt: {prompt}")
# Resize with high quality
resized_image = input_image.resize((target_width, target_height), Image.LANCZOS)
# Generate depth map using Zoe
print("Generating Zoe depth map...")
depth_image = self.get_depth_map(resized_image)
if depth_image.size != (target_width, target_height):
depth_image = depth_image.resize((target_width, target_height), Image.LANCZOS)
# Handle face detection for InstantID
using_multiple_controlnets = self.using_multiple_controlnets
face_kps = None
face_embeddings = None
has_detected_faces = False
if using_multiple_controlnets and self.face_app is not None:
print("Detecting faces and extracting keypoints...")
img_array = np.array(resized_image)
faces = self.face_app.get(img_array)
if len(faces) > 0:
has_detected_faces = True
print(f"Detected {len(faces)} face(s)")
# Get the largest face
face = sorted(faces,
key=lambda x: (x.bbox[2] - x.bbox[0]) * (x.bbox[3] - x.bbox[1]))[-1]
# Extract face embeddings
face_embeddings = torch.from_numpy(face.normed_embedding).unsqueeze(0).to(
self.device, dtype=self.dtype
)
# Draw keypoints (this shows age, gender, expression)
face_kps = draw_kps(resized_image, face.kps)
print(f"Face keypoints drawn (age/gender/expression preserved)")
else:
print("No faces detected in image")
# Set LORA scale
if hasattr(self.pipe, 'set_adapters') and self.models_loaded['lora']:
try:
self.pipe.set_adapters(["retroart"], adapter_weights=[lora_scale])
print(f"LORA scale: {lora_scale}")
except Exception as e:
print(f"Could not set LORA scale: {e}")
# Prepare generation kwargs
pipe_kwargs = {
"prompt": prompt,
"negative_prompt": negative_prompt,
"image": resized_image, # Original image for img2img
"num_inference_steps": num_inference_steps,
"guidance_scale": guidance_scale,
"strength": strength, # img2img denoising strength
"generator": torch.Generator(device=self.device).manual_seed(42)
}
# Configure ControlNet inputs
if using_multiple_controlnets and has_detected_faces and face_kps is not None:
print("Using InstantID + Zoe Depth ControlNets with face keypoints")
control_images = [face_kps, depth_image]
conditioning_scales = [face_strength, depth_control_scale]
pipe_kwargs["control_image"] = control_images
pipe_kwargs["controlnet_conditioning_scale"] = conditioning_scales
# Add face embeddings through IP-Adapter
if face_embeddings is not None and hasattr(self.pipe, 'set_ip_adapter_scale'):
pipe_kwargs["ip_adapter_image_embeds"] = [face_embeddings]
elif using_multiple_controlnets:
print("Multiple ControlNets available but no faces detected - using depth only")
# Use depth for both to maintain structure
control_images = [depth_image, depth_image]
conditioning_scales = [0.0, depth_control_scale] # Disable InstantID
pipe_kwargs["control_image"] = control_images
pipe_kwargs["controlnet_conditioning_scale"] = conditioning_scales
else:
print("Using Zoe Depth ControlNet only")
pipe_kwargs["control_image"] = depth_image
pipe_kwargs["controlnet_conditioning_scale"] = depth_control_scale
# Generate
mode = "LCM" if self.use_lcm else "Quality"
print(f"Generating with {mode} mode: Steps={num_inference_steps}, CFG={guidance_scale}, Strength={strength}")
result = self.pipe(**pipe_kwargs)
return result.images[0]
# Initialize converter
print("Initializing RetroArt Converter...")
print("Choose mode: LCM (fast) or Quality (better)")
converter_lcm = RetroArtConverter(use_lcm=True)
converter_quality = RetroArtConverter(use_lcm=False)
@spaces.GPU
def process_image(
image,
prompt,
negative_prompt,
steps,
guidance_scale,
strength,
controlnet_scale,
lora_scale,
face_strength,
depth_control_scale,
use_lcm_mode
):
if image is None:
return None
try:
# Choose the right converter based on mode
converter = converter_lcm if use_lcm_mode else converter_quality
result = converter.generate_retro_art(
input_image=image,
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=int(steps),
guidance_scale=guidance_scale,
strength=strength,
controlnet_conditioning_scale=controlnet_scale,
lora_scale=lora_scale,
face_strength=face_strength,
depth_control_scale=depth_control_scale
)
return result
except Exception as e:
print(f"Error: {e}")
import traceback
traceback.print_exc()
raise gr.Error(f"Generation failed: {str(e)}")
# Gradio UI
with gr.Blocks(title="RetroArt Converter - Improved", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# ๐ฎ RetroArt Converter (Improved with True Img2Img)
Convert images into retro pixel art style with **proper face detection** and **gender/age preservation**!
**โจ Key Improvements:**
- ๐ฏ **True img2img pipeline** for better structure preservation
- ๐ค **draw_kps**: Detects and preserves age, gender, expression
- ๐บ๏ธ **Zoe Depth**: Superior depth estimation
- โก **Dual Mode**: Fast LCM or Quality DPM++
- ๐จ Custom pixel art LORA with trigger: `p1x3l4rt, pixel art`
""")
# Model status
status_text = "**๐ฆ Loaded Models (LCM Mode):**\n"
status_text += f"- Custom Checkpoint: {'โ Loaded' if converter_lcm.models_loaded['custom_checkpoint'] else 'โ Using SDXL base'}\n"
status_text += f"- LORA (RetroArt): {'โ Loaded' if converter_lcm.models_loaded['lora'] else 'โ Disabled'}\n"
status_text += f"- InstantID: {'โ Loaded' if converter_lcm.models_loaded['instantid'] else 'โ Disabled'}\n"
gr.Markdown(status_text)
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image", type="pil")
prompt = gr.Textbox(
label="Prompt (trigger word auto-added)",
value="retro game character, vibrant colors, highly detailed",
lines=3,
info=f"'{TRIGGER_WORD}' will be automatically added"
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
value="blurry, low quality, ugly, distorted, deformed, bad anatomy",
lines=2
)
use_lcm_mode = gr.Checkbox(
label="Use LCM Mode (Fast)",
value=True,
info="Uncheck for Quality mode (slower but better)"
)
with gr.Accordion("โ๏ธ Generation Settings", open=True):
steps = gr.Slider(
minimum=4,
maximum=50,
value=12,
step=1,
label="Inference Steps (12 for LCM, 25-40 for Quality)"
)
guidance_scale = gr.Slider(
minimum=0.5,
maximum=15.0,
value=1.0,
step=0.1,
label="Guidance Scale (1.0-1.5 for LCM, 5-7.5 for Quality)"
)
strength = gr.Slider(
minimum=0.3,
maximum=1.0,
value=0.7,
step=0.05,
label="Img2Img Strength (how much to change)"
)
with gr.Accordion("๐จ Style Settings", open=True):
lora_scale = gr.Slider(
minimum=0.5,
maximum=1.5,
value=1.0,
step=0.05,
label="RetroArt LORA Scale"
)
controlnet_scale = gr.Slider(
minimum=0.3,
maximum=1.2,
value=0.8,
step=0.05,
label="Overall ControlNet Scale"
)
with gr.Accordion("๐ค Face & Depth Settings", open=False):
face_strength = gr.Slider(
minimum=0,
maximum=2.0,
value=0.85,
step=0.05,
label="Face Preservation (InstantID)",
info="Higher = better face likeness"
)
depth_control_scale = gr.Slider(
minimum=0,
maximum=1.0,
value=0.8,
step=0.05,
label="Zoe Depth Control Scale",
info="Higher = more structure preservation"
)
generate_btn = gr.Button("๐จ Generate Retro Art", variant="primary", size="lg")
with gr.Column():
output_image = gr.Image(label="Retro Art Output")
gr.Markdown("""
### ๐ก Tips for Best Results:
**Mode Selection:**
- โ
**LCM Mode**: 12 steps, CFG 1.0-1.5, Strength 0.6-0.8 (โก fast!)
- โ
**Quality Mode**: 25-40 steps, CFG 5-7.5, Strength 0.4-0.7 (๐จ better!)
**Face Preservation:**
- System automatically detects faces and draws keypoints
- Preserves age, gender, and expression characteristics
- Adjust "Face Preservation" slider for control
**For Best Quality:**
- Use high-resolution input images (min 512px)
- For portraits: enable Quality mode + high face strength
- For scenes: lower img2img strength for more creativity
- Adjust depth control for structure vs creativity balance
**Style Control:**
- LORA trigger word auto-added for pixel art style
- Increase LORA scale (1.2-1.5) for stronger retro effect
- Try: "SNES style", "16-bit RPG", "Game Boy advance style"
""")
# Update defaults when switching modes
def update_mode_defaults(use_lcm):
if use_lcm:
return (
gr.update(value=12), # steps
gr.update(value=1.0), # guidance_scale
gr.update(value=0.7) # strength
)
else:
return (
gr.update(value=30), # steps
gr.update(value=6.0), # guidance_scale
gr.update(value=0.6) # strength
)
use_lcm_mode.change(
fn=update_mode_defaults,
inputs=[use_lcm_mode],
outputs=[steps, guidance_scale, strength]
)
generate_btn.click(
fn=process_image,
inputs=[
input_image, prompt, negative_prompt, steps, guidance_scale, strength,
controlnet_scale, lora_scale, face_strength, depth_control_scale, use_lcm_mode
],
outputs=[output_image]
)
if __name__ == "__main__":
demo.queue(max_size=20)
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_api=True
) |