File size: 8,845 Bytes
4b17916
2a0098d
6142af3
 
46a015f
132c134
46a015f
6142af3
5b2a6b6
6142af3
ffce11c
6142af3
2a0098d
4b17916
2a0098d
31e12c0
4b17916
 
1e679fd
e1111e0
 
2a0098d
 
 
 
 
0e14740
132c134
2a0098d
46a015f
4c88f38
31e12c0
ffce11c
46a015f
3c9a1a6
46a015f
 
 
bc2abd9
46a015f
4b17916
46a015f
1e679fd
6142af3
 
 
ffce11c
 
31e12c0
 
ffce11c
 
3c9a1a6
 
ffce11c
 
132c134
 
 
bc2abd9
46a015f
132c134
 
46a015f
31e12c0
 
 
4b17916
31e12c0
 
3c9a1a6
31e12c0
3c9a1a6
47aabc6
 
31e12c0
 
47aabc6
 
3c9a1a6
31e12c0
bc2abd9
2a0098d
31e12c0
2a0098d
46a015f
4906187
 
ffce11c
64f616b
4906187
64f616b
4906187
 
 
 
64f616b
4906187
 
 
 
2a0098d
6142af3
 
132c134
6142af3
 
 
bc2abd9
5b2a6b6
bc2abd9
46a015f
 
bc2abd9
5b2a6b6
132c134
5b2a6b6
6142af3
 
bc2abd9
31e12c0
46a015f
64f616b
6142af3
46a015f
64f616b
0e14740
64f616b
 
46a015f
64f616b
bc2abd9
46a015f
 
 
 
 
 
 
1e679fd
64f616b
6142af3
46a015f
ffce11c
46a015f
6142af3
46a015f
132c134
6142af3
bc2abd9
 
 
 
 
64f616b
 
 
 
 
3c9a1a6
64f616b
46a015f
6142af3
bc2abd9
6142af3
 
 
 
 
 
0e14740
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import os
import asyncio
import json
import logging
import random
import re
from typing import AsyncGenerator, Optional, Tuple, List

from fastapi import FastAPI
from fastapi.responses import StreamingResponse
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from dotenv import load_dotenv
import aiohttp
from bs4 import BeautifulSoup
from duckduckgo_search import AsyncDDGS

# --- Configuration ---
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

load_dotenv()
LLM_API_KEY = os.getenv("LLM_API_KEY")

if not LLM_API_KEY:
    raise RuntimeError("LLM_API_KEY must be set in a .env file.")
else:
    logger.info("LLM API Key loaded successfully.")

# --- Constants & Headers ---
LLM_API_URL = "https://api.typegpt.net/v1/chat/completions"
LLM_MODEL = "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8"
MAX_SOURCES_TO_PROCESS = 15

# Real Browser User Agents for SCRAPING
USER_AGENTS = [
    "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/128.0.0.0 Safari/537.36",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/128.0.0.0 Safari/537.36",
    "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:129.0) Gecko/20100101 Firefox/129.0"
]

LLM_HEADERS = {"Authorization": f"Bearer {LLM_API_KEY}", "Content-Type": "application/json", "Accept": "application/json"}

class DeepResearchRequest(BaseModel):
    query: str

app = FastAPI(
    title="AI Deep Research API",
    description="Provides robust, long-form, streaming deep research completions using the DuckDuckGo Search API.",
    version="9.1.0"  # Updated version for DuckDuckGo integration
)

# Enable CORS for all origins
app.add_middleware(CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"])

# --- Helper Functions ---
def extract_json_from_llm_response(text: str) -> Optional[list]:
    match = re.search(r'\[.*\]', text, re.DOTALL)
    if match:
        try: return json.loads(match.group(0))
        except json.JSONDecodeError: return None
    return None

# --- Core Service Functions ---
async def call_duckduckgo_search(query: str, max_results: int = 10) -> List[dict]:
    """Performs a search using the DuckDuckGo Search API."""
    logger.info(f"Searching DuckDuckGo API for: '{query}'")
    try:
        async with AsyncDDGS() as ddgs:
            raw_results = [r async for r in ddgs.text(query, max_results=max_results)]
            
            # Map the response keys to the expected format
            results = [
                {
                    'title': r.get('title'),
                    'link': r.get('href'),
                    'snippet': r.get('body')
                }
                for r in raw_results if r.get('href') and r.get('title') and r.get('body')
            ]
            logger.info(f"Found {len(results)} sources from DuckDuckGo for: '{query}'")
            return results
    except Exception as e:
        logger.error(f"DuckDuckGo search failed for query '{query}': {e}"); return []

async def research_and_process_source(session: aiohttp.ClientSession, source: dict) -> Tuple[str, dict]:
    headers = {'User-Agent': random.choice(USER_AGENTS)}
    try:
        logger.info(f"Scraping: {source['link']}")
        if source['link'].lower().endswith('.pdf'): raise ValueError("PDF content")
        async with session.get(source['link'], headers=headers, timeout=10, ssl=False) as response:
            if response.status != 200: raise ValueError(f"HTTP status {response.status}")
            html = await response.text()
            soup = BeautifulSoup(html, "html.parser")
            for tag in soup(['script', 'style', 'nav', 'footer', 'header', 'aside']): tag.decompose()
            content = " ".join(soup.stripped_strings)
            if not content.strip(): raise ValueError("Parsed content is empty.")
            return content, source
    except Exception as e:
        logger.warning(f"Scraping failed for {source['link']} ({e}). Falling back to snippet.")
        return source.get('snippet', ''), source

# --- Streaming Deep Research Logic ---
async def run_deep_research_stream(query: str) -> AsyncGenerator[str, None]:
    def format_sse(data: dict) -> str: return f"data: {json.dumps(data)}\n\n"
    try:
        async with aiohttp.ClientSession() as session:
            yield format_sse({"event": "status", "data": "Generating research plan..."})
            plan_prompt = {"model": LLM_MODEL, "messages": [{"role": "user", "content": f"Generate 3-4 key sub-questions for a research report on '{query}'. Your response MUST be ONLY the raw JSON array. Example: [\"Question 1?\"]"}]}
            try:
                async with session.post(LLM_API_URL, headers=LLM_HEADERS, json=plan_prompt, timeout=25) as response:
                    response.raise_for_status(); result = await response.json()
                    sub_questions = result if isinstance(result, list) else extract_json_from_llm_response(result['choices'][0]['message']['content'])
                    if not isinstance(sub_questions, list): raise ValueError(f"Invalid plan from LLM: {result}")
            except Exception as e:
                yield format_sse({"event": "error", "data": f"Could not generate research plan. Reason: {e}"}); return

            yield format_sse({"event": "plan", "data": sub_questions})

            yield format_sse({"event": "status", "data": f"Searching sources for {len(sub_questions)} topics..."})
            search_tasks = [call_duckduckgo_search(sq) for sq in sub_questions]
            all_search_results = await asyncio.gather(*search_tasks)
            unique_sources = list({source['link']: source for results in all_search_results for source in results}.values())
            
            if not unique_sources:
                yield format_sse({"event": "error", "data": "All search queries returned zero usable sources."}); return
            
            sources_to_process = unique_sources[:MAX_SOURCES_TO_PROCESS]
            yield format_sse({"event": "status", "data": f"Found {len(unique_sources)} unique sources. Processing the top {len(sources_to_process)}..."})
            
            processing_tasks = [research_and_process_source(session, source) for source in sources_to_process]
            consolidated_context, all_sources_used = "", []
            
            for task in asyncio.as_completed(processing_tasks):
                content, source_info = await task
                if content:
                    consolidated_context += f"Source: {source_info['link']}\nContent: {content}\n\n---\n\n"
                    all_sources_used.append(source_info)

            if not consolidated_context.strip():
                yield format_sse({"event": "error", "data": "Failed to gather any research context."}); return

            yield format_sse({"event": "status", "data": "Synthesizing final report..."})
            report_prompt = f'Synthesize the provided context into a long-form, comprehensive, multi-page report on "{query}". Use markdown. Elaborate extensively on each point. Base your entire report ONLY on the provided context.\n\n## Research Context ##\n{consolidated_context}'
            report_payload = {"model": LLM_MODEL, "messages": [{"role": "user", "content": report_prompt}], "stream": True}

            async with session.post(LLM_API_URL, headers=LLM_HEADERS, json=report_payload) as response:
                response.raise_for_status()
                async for line in response.content:
                    line_str = line.decode('utf-8').strip()
                    if line_str.startswith('data:'): line_str = line_str[5:].strip()
                    if line_str == "[DONE]": break
                    try:
                        chunk = json.loads(line_str)
                        choices = chunk.get("choices")
                        if choices and isinstance(choices, list) and len(choices) > 0:
                            content = choices[0].get("delta", {}).get("content")
                            if content:
                                yield format_sse({"event": "chunk", "data": content})
                    except json.JSONDecodeError: continue

            yield format_sse({"event": "sources", "data": all_sources_used})
    except Exception as e:
        logger.error(f"A critical error occurred: {e}", exc_info=True)
        yield format_sse({"event": "error", "data": str(e)})
    finally:
        yield format_sse({"event": "done", "data": "Deep research complete."})

@app.post("/v1/deepresearch/completions")
async def deep_research_endpoint(request: DeepResearchRequest):
    return StreamingResponse(run_deep_research_stream(request.query), media_type="text/event-stream")