File size: 9,661 Bytes
4b17916 2a0098d 6142af3 46a015f 132c134 46a015f 6142af3 5b2a6b6 6142af3 ffce11c 6142af3 2a0098d 4b17916 2a0098d 0eacd1e 4b17916 1e679fd e1111e0 2a0098d 0e14740 132c134 2a0098d 46a015f 4c88f38 31e12c0 ffce11c 46a015f 3c9a1a6 46a015f bc2abd9 46a015f 4b17916 46a015f 1e679fd 6142af3 ffce11c 31e12c0 0eacd1e ffce11c 3c9a1a6 43aeff7 ffce11c 132c134 a38a28a 132c134 46a015f 5366574 0eacd1e 4b17916 0eacd1e 2a0098d 0eacd1e 5366574 2a0098d 0eacd1e 46a015f 4906187 ffce11c a38a28a 4906187 a38a28a 4906187 a38a28a 4906187 a38a28a 4906187 2a0098d 6142af3 a38a28a 6142af3 a38a28a 5b2a6b6 bc2abd9 a38a28a 46a015f 0eacd1e 5b2a6b6 a38a28a 5b2a6b6 6142af3 a38a28a 43aeff7 5366574 46a015f 64f616b a38a28a 46a015f 0eacd1e a38a28a 64f616b 43aeff7 a38a28a 64f616b 43aeff7 a38a28a 46a015f 0eacd1e 46a015f 1e679fd 0eacd1e a38a28a 6142af3 46a015f ffce11c 43aeff7 6142af3 46a015f 132c134 6142af3 bc2abd9 a38a28a bc2abd9 64f616b a38a28a 64f616b 46a015f 6142af3 bc2abd9 43aeff7 0eacd1e 43aeff7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
import os
import asyncio
import json
import logging
import random
import re
from typing import AsyncGenerator, Optional, Tuple, List
from fastapi import FastAPI
from fastapi.responses import StreamingResponse
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from dotenv import load_dotenv
import aiohttp
from bs4 import BeautifulSoup
from ddgs import DDGS # <-- Make sure this import is present
# --- Configuration ---
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
load_dotenv()
LLM_API_KEY = os.getenv("LLM_API_KEY")
if not LLM_API_KEY:
raise RuntimeError("LLM_API_KEY must be set in a .env file.")
else:
logger.info("LLM API Key loaded successfully.")
# --- Constants & Headers ---
LLM_API_URL = "https://api.typegpt.net/v1/chat/completions"
LLM_MODEL = "meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8"
MAX_SOURCES_TO_PROCESS = 15
# Real Browser User Agents for SCRAPING
USER_AGENTS = [
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/128.0.0.0 Safari/537.36",
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/128.0.0.0 Safari/537.36",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:129.0) Gecko/20100101 Firefox/129.0"
]
LLM_HEADERS = {"Authorization": f"Bearer {LLM_API_KEY}", "Content-Type": "application/json", "Accept": "application/json"}
class DeepResearchRequest(BaseModel):
query: str
app = FastAPI(
title="AI Deep Research API",
description="Provides robust, long-form, streaming deep research completions using the DuckDuckGo Search API.",
version="9.4.0" # Reverted to reliable DDGS library search
)
# Enable CORS for all origins
app.add_middleware(CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"])
# --- Helper Functions ---
def extract_json_from_llm_response(text: str) -> Optional[list]:
match = re.search(r'\[.*\]', text, re.DOTALL)
if match:
try:
return json.loads(match.group(0))
except json.JSONDecodeError:
return None
return None
# --- Core Service Functions ---
async def call_duckduckgo_search(session: aiohttp.ClientSession, query: str, max_results: int = 10) -> List[dict]:
"""
Performs a search using the DDGS library with an existing aiohttp session.
This method is more reliable than direct HTML scraping.
"""
logger.info(f"Searching DuckDuckGo API via DDGS for: '{query}'")
try:
ddgs = DDGS(session=session)
# Use ddgs.atext for asynchronous text search
raw_results = [r async for r in ddgs.atext(query, max_results=max_results)]
# Filter and format results to ensure they have the necessary keys
results = [
{'title': r.get('title'), 'link': r.get('href'), 'snippet': r.get('body')}
for r in raw_results if r.get('href') and r.get('title') and r.get('body')
]
logger.info(f"Found {len(results)} sources from DuckDuckGo for: '{query}'")
return results
except Exception as e:
logger.error(f"DDGS search failed for query '{query}': {e}", exc_info=True)
return []
async def research_and_process_source(session: aiohttp.ClientSession, source: dict) -> Tuple[str, dict]:
headers = {'User-Agent': random.choice(USER_AGENTS)}
try:
logger.info(f"Scraping: {source['link']}")
if source['link'].lower().endswith('.pdf'):
raise ValueError("PDF content")
async with session.get(source['link'], headers=headers, timeout=10, ssl=False) as response:
if response.status != 200:
raise ValueError(f"HTTP status {response.status}")
html = await response.text()
soup = BeautifulSoup(html, "html.parser")
for tag in soup(['script', 'style', 'nav', 'footer', 'header', 'aside']):
tag.decompose()
content = " ".join(soup.stripped_strings)
if not content.strip():
raise ValueError("Parsed content is empty.")
return content, source
except Exception as e:
logger.warning(f"Scraping failed for {source['link']} ({e}). Falling back to snippet.")
return source.get('snippet', ''), source
# --- Streaming Deep Research Logic ---
async def run_deep_research_stream(query: str) -> AsyncGenerator[str, None]:
def format_sse(data: dict) -> str:
return f"data: {json.dumps(data)}\n\n"
try:
async with aiohttp.ClientSession() as session:
yield format_sse({"event": "status", "data": "Generating research plan..."})
plan_prompt = {
"model": LLM_MODEL,
"messages": [{
"role": "user",
"content": f"Generate 3-4 key sub-questions for a research report on '{query}'. Your response MUST be ONLY the raw JSON array. Example: [\"Question 1?\"]"
}]
}
try:
async with session.post(LLM_API_URL, headers=LLM_HEADERS, json=plan_prompt, timeout=25) as response:
response.raise_for_status()
result = await response.json()
sub_questions = result if isinstance(result, list) else extract_json_from_llm_response(result['choices'][0]['message']['content'])
if not isinstance(sub_questions, list) or not sub_questions:
raise ValueError(f"Invalid or empty plan from LLM: {result}")
except Exception as e:
yield format_sse({"event": "error", "data": f"Could not generate research plan. Reason: {e}"})
return
yield format_sse({"event": "plan", "data": sub_questions})
yield format_sse({"event": "status", "data": f"Searching sources for {len(sub_questions)} topics..."})
search_tasks = [call_duckduckgo_search(session, sq) for sq in sub_questions]
all_search_results = await asyncio.gather(*search_tasks)
unique_sources = list({source['link']: source for results in all_search_results for source in results}.values())
if not unique_sources:
yield format_sse({"event": "error", "data": f"Could not find any relevant sources for the query '{query}'. Please try a different topic."})
return
sources_to_process = unique_sources[:MAX_SOURCES_TO_PROCESS]
yield format_sse({"event": "status", "data": f"Found {len(unique_sources)} unique sources. Processing the top {len(sources_to_process)}..."})
processing_tasks = [research_and_process_source(session, source) for source in sources_to_process]
consolidated_context, all_sources_used = "", []
for task in asyncio.as_completed(processing_tasks):
content, source_info = await task
if content and content.strip():
consolidated_context += f"Source: {source_info['link']}\nContent: {content}\n\n---\n\n"
all_sources_used.append(source_info)
if not consolidated_context.strip():
yield format_sse({"event": "error", "data": "Failed to scrape content from any of the discovered sources."})
return
yield format_sse({"event": "status", "data": "Synthesizing final report..."})
report_prompt = f'Synthesize the provided context into a long-form, comprehensive, multi-page report on "{query}". Use markdown. Elaborate extensively on each point. Base your entire report ONLY on the provided context.\n\n## Research Context ##\n{consolidated_context}'
report_payload = {"model": LLM_MODEL, "messages": [{"role": "user", "content": report_prompt}], "stream": True}
async with session.post(LLM_API_URL, headers=LLM_HEADERS, json=report_payload) as response:
response.raise_for_status()
async for line in response.content:
line_str = line.decode('utf-8').strip()
if line_str.startswith('data:'):
line_str = line_str[5:].strip()
if line_str == "[DONE]":
break
try:
chunk = json.loads(line_str)
choices = chunk.get("choices")
if choices and isinstance(choices, list) and len(choices) > 0:
content = choices[0].get("delta", {}).get("content")
if content:
yield format_sse({"event": "chunk", "data": content})
except json.JSONDecodeError:
continue
yield format_sse({"event": "sources", "data": all_sources_used})
except Exception as e:
logger.error(f"A critical error occurred: {e}", exc_info=True)
yield format_sse({"event": "error", "data": f"An unexpected error occurred: {str(e)}"})
@app.post("/deep-research", response_class=StreamingResponse)
async def deep_research_endpoint(request: DeepResearchRequest):
"""
Accepts a query and streams back a detailed research report.
Events: status, plan, chunk, sources, error
"""
return StreamingResponse(run_deep_research_stream(request.query), media_type="text/event-stream")
if __name__ == "__main__":
import uvicorn
# To run this app: uvicorn your_filename:app --reload
uvicorn.run(app, host="0.0.0.0", port=8000) |