Spaces:
Running
Running
File size: 11,664 Bytes
e342cce 4b151cd e342cce 6ff1fb4 e342cce e71ed18 e342cce 37b3dd0 ba79545 ecaff1f 9f4b73f ecaff1f 9f4b73f ecaff1f 9f4b73f ecaff1f 9f4b73f e342cce 9f4b73f e342cce 8c5e7d3 e342cce 90cd943 e71ed18 e342cce e02388e e71ed18 e342cce ec30e66 e342cce 99665c4 e02388e e71ed18 e342cce e02388e e342cce e02388e e342cce e71ed18 efb6584 e02388e efb6584 e342cce 5283a70 e71ed18 e342cce efb6584 e342cce efb6584 e02388e e71ed18 6ff1fb4 e71ed18 e342cce efb6584 5283a70 efb6584 e342cce e02388e ecaff1f e02388e ba79545 e02388e efb6584 e02388e efb6584 e02388e efb6584 ba79545 efb6584 e02388e efb6584 e02388e efb6584 8c5e7d3 efb6584 ba79545 efb6584 e02388e efb6584 e02388e efb6584 8c5e7d3 efb6584 e02388e efb6584 e02388e efb6584 8c5e7d3 efb6584 ba79545 efb6584 e02388e efb6584 8c5e7d3 efb6584 e02388e efb6584 e02388e efb6584 8c5e7d3 efb6584 e02388e 25e5e40 e02388e efb6584 e02388e efb6584 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
import os
os.environ['HF_HOME'] = '/tmp'
import time
import streamlit as st
import pandas as pd
import io
import plotly.express as px
import zipfile
import string
from cryptography.fernet import Fernet
from streamlit_extras.stylable_container import stylable_container
from typing import Optional
from gliner import GLiNER
from comet_ml import Experiment
# --- Page Configuration and UI Elements ---
st.set_page_config(layout="wide", page_title="Named Entity Recognition App")
st.subheader("DataHarvest", divider="violet")
st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")
st.markdown(':rainbow[**Supported Languages: English**]')
expander = st.expander("**Important notes**")
expander.write("""**Named Entities:** This DataHarvest web app predicts nine (9) labels: "person", "country", "city", "organization", "date", "time", "cardinal", "money", "position"
Results are presented in easy-to-read tables, visualized in an interactive tree map, pie chart and bar chart, and are available for download along with a Glossary of tags.
**How to Use:** Type or paste your text into the text area below, then press Ctrl + Enter. Click the 'Results' button to extract and tag entities in your text data.
**Usage Limits:** You can request results unlimited times for one (1) month.
**Technical issues:** If your connection times out, please refresh the page or reopen the app's URL.
For any errors or inquiries, please contact us at info@nlpblogs.com""")
with st.sidebar:
st.write("Use the following code to embed the DataHarvest web app on your website. Feel free to adjust the width and height values to fit your page.")
code = '''
<iframe
src="https://aiecosystem-dataharvest.hf.space"
frameborder="0"
width="850"
height="450"
></iframe>
'''
st.code(code, language="html")
st.text("")
st.text("")
st.subheader("π Ready to build your own AI Web App?", divider="violet")
st.link_button("AI Web App Builder", "https://nlpblogs.com/build-your-named-entity-recognition-app/", type="primary")
# --- Comet ML Setup ---
COMET_API_KEY = os.environ.get("COMET_API_KEY")
COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")
comet_initialized = bool(COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME)
if not comet_initialized:
st.warning("Comet ML not initialized. Check environment variables.")
print("Warning: Comet ML environment variables are not set. Logging will be disabled.")
# --- Label Definitions ---
labels = ["person", "country", "city", "organization", "date", "time", "cardinal", "money", "position"]
category_mapping = {
"People": ["person", "organization", "position"],
"Locations": ["country", "city"],
"Time": ["date", "time"],
"Numbers": ["money", "cardinal"]
}
# --- Model Loading ---
@st.cache_resource
def load_ner_model():
"""Loads the GLiNER model and caches it."""
try:
return GLiNER.from_pretrained("knowledgator/gliner-multitask-large-v0.5", nested_ner=True, num_gen_sequences=2, gen_constraints=labels)
except Exception as e:
st.error(f"Failed to load NER model. Please check your internet connection or model availability: {e}")
st.stop()
model = load_ner_model()
reverse_category_mapping = {label: category for category, label_list in category_mapping.items() for label in label_list}
# --- Session State Initialization ---
if 'show_results' not in st.session_state:
st.session_state.show_results = False
if 'last_text' not in st.session_state:
st.session_state.last_text = ""
if 'results_df' not in st.session_state:
st.session_state.results_df = pd.DataFrame()
if 'elapsed_time' not in st.session_state:
st.session_state.elapsed_time = 0.0
# --- Text Input and Clear Button ---
word_limit = 200
text = st.text_area(f"Type or paste your text below (max {word_limit} words), and then press Ctrl + Enter", height=250, key='my_text_area')
word_count = len(text.split())
st.markdown(f"**Word count:** {word_count}/{word_limit}")
def clear_text():
"""Clears the text area and hides results."""
st.session_state['my_text_area'] = ""
st.session_state.show_results = False
st.session_state.last_text = ""
st.session_state.results_df = pd.DataFrame()
st.session_state.elapsed_time = 0.0
st.button("Clear text", on_click=clear_text)
# --- Results Section ---
if st.button("Results"):
if not text.strip():
st.warning("Please enter some text to extract entities.")
st.session_state.show_results = False
elif word_count > word_limit:
st.warning(f"Your text exceeds the {word_limit} word limit. Please shorten it to continue.")
st.session_state.show_results = False
else:
# Check if the text is different from the last time
if text != st.session_state.last_text:
st.session_state.show_results = True
st.session_state.last_text = text
start_time = time.time()
with st.spinner("Extracting entities...", show_time=True):
# Pass the raw text directly to the model
entities = model.predict_entities(text, labels)
df = pd.DataFrame(entities)
st.session_state.results_df = df
if not df.empty:
df['category'] = df['label'].map(reverse_category_mapping)
if comet_initialized:
experiment = Experiment(api_key=COMET_API_KEY, workspace=COMET_WORKSPACE, project_name=COMET_PROJECT_NAME)
experiment.log_parameter("input_text", text)
experiment.log_table("predicted_entities", df)
experiment.end()
end_time = time.time()
st.session_state.elapsed_time = end_time - start_time
# Place the message here, so it only runs once per button click
st.info(f"Results processed in **{st.session_state.elapsed_time:.2f} seconds**.")
# If the text is the same, do nothing but keep results displayed
else:
st.session_state.show_results = True
# Display results if the state variable is True
if st.session_state.show_results:
df = st.session_state.results_df
if not df.empty:
df['category'] = df['label'].map(reverse_category_mapping)
st.subheader("Grouped Entities by Category", divider="violet")
category_names = sorted(list(category_mapping.keys()))
category_tabs = st.tabs(category_names)
for i, category_name in enumerate(category_names):
with category_tabs[i]:
df_category_filtered = df[df['category'] == category_name]
if not df_category_filtered.empty:
st.dataframe(df_category_filtered.drop(columns=['category']), use_container_width=True)
else:
st.info(f"No entities found for the '{category_name}' category.")
with st.expander("See Glossary of tags"):
st.write('''
- **text**: ['entity extracted from your text data']
- **score**: ['accuracy score; how accurately a tag has been assigned to a given entity']
- **label**: ['label (tag) assigned to a given extracted entity']
- **start**: ['index of the start of the corresponding entity']
- **end**: ['index of the end of the corresponding entity']
''')
st.divider()
# Tree map
st.subheader("Tree map", divider="violet")
fig_treemap = px.treemap(df, path=[px.Constant("all"), 'category', 'label', 'text'], values='score', color='category')
fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25))
expander = st.expander("**Download**")
expander.write("""You can easily download the tree map by hovering over it. Look for the download icon that appears in the top right corner.
""")
st.plotly_chart(fig_treemap)
# Pie and Bar charts
grouped_counts = df['category'].value_counts().reset_index()
grouped_counts.columns = ['category', 'count']
col1, col2 = st.columns(2)
with col1:
st.subheader("Pie chart", divider="violet")
fig_pie = px.pie(grouped_counts, values='count', names='category', hover_data=['count'], labels={'count': 'count'}, title='Percentage of predicted categories')
fig_pie.update_traces(textposition='inside', textinfo='percent+label')
expander = st.expander("**Download**")
expander.write("""You can easily download the pie chart by hovering over it. Look for the download icon that appears in the top right corner.
""")
st.plotly_chart(fig_pie)
with col2:
st.subheader("Bar chart", divider="violet")
fig_bar = px.bar(grouped_counts, x="count", y="category", color="category", text_auto=True, title='Occurrences of predicted categories')
expander = st.expander("**Download**")
expander.write("""You can easily download the bar chart by hovering over it. Look for the download icon that appears in the top right corner.
""")
st.plotly_chart(fig_bar)
# Most Frequent Entities
st.subheader("Most Frequent Entities", divider="violet")
word_counts = df['text'].value_counts().reset_index()
word_counts.columns = ['Entity', 'Count']
repeating_entities = word_counts[word_counts['Count'] > 1]
if not repeating_entities.empty:
st.dataframe(repeating_entities, use_container_width=True)
fig_repeating_bar = px.bar(repeating_entities, x='Entity', y='Count', color='Entity')
fig_repeating_bar.update_layout(xaxis={'categoryorder': 'total descending'})
expander = st.expander("**Download**")
expander.write("""You can easily download the bar chart by hovering over it. Look for the download icon that appears in the top right corner.
""")
st.plotly_chart(fig_repeating_bar)
else:
st.warning("No entities were found that occur more than once.")
# Download Section
st.divider()
dfa = pd.DataFrame(data={'Column Name': ['text', 'label', 'score', 'start', 'end'],
'Description': ['entity extracted from your text data', 'label (tag) assigned to a given extracted entity', 'accuracy score; how accurately a tag has been assigned to a given entity', 'index of the start of the corresponding entity', 'index of the end of the corresponding entity']})
buf = io.BytesIO()
with zipfile.ZipFile(buf, "w") as myzip:
myzip.writestr("Summary of the results.csv", df.to_csv(index=False))
myzip.writestr("Most Frequent Entities.csv", repeating_entities.to_csv(index=False))
myzip.writestr("Glossary of tags.csv", dfa.to_csv(index=False))
with stylable_container(
key="download_button",
css_styles="""button { background-color: #8A2BE2; border: 1px solid black; padding: 5px; color: white; }""",
):
st.download_button(
label="Download results and glossary (zip)",
data=buf.getvalue(),
file_name="nlpblogs_results.zip",
mime="application/zip"
)
st.text("")
st.text("")
else:
st.warning("No entities were found in the provided text.") |