File size: 11,664 Bytes
e342cce
 
 
4b151cd
e342cce
 
 
 
6ff1fb4
e342cce
 
 
 
 
e71ed18
e342cce
 
 
 
 
37b3dd0
ba79545
ecaff1f
9f4b73f
ecaff1f
9f4b73f
ecaff1f
9f4b73f
ecaff1f
9f4b73f
 
 
 
e342cce
 
 
 
9f4b73f
 
 
 
 
 
e342cce
 
 
 
8c5e7d3
e342cce
90cd943
e71ed18
e342cce
 
 
 
 
 
 
e02388e
e71ed18
e342cce
ec30e66
e342cce
 
 
99665c4
e02388e
 
e71ed18
e342cce
 
 
e02388e
e342cce
e02388e
e342cce
 
 
 
 
e71ed18
efb6584
 
 
 
 
 
 
e02388e
 
efb6584
e342cce
5283a70
 
 
 
e71ed18
e342cce
efb6584
e342cce
efb6584
 
e02388e
 
e71ed18
6ff1fb4
e71ed18
e342cce
 
 
 
efb6584
5283a70
 
efb6584
e342cce
e02388e
 
 
 
 
 
ecaff1f
 
e02388e
 
 
 
 
 
 
 
 
 
 
ba79545
 
e02388e
 
 
efb6584
 
 
 
 
e02388e
 
 
efb6584
 
e02388e
efb6584
 
 
 
 
 
 
ba79545
efb6584
 
 
 
 
 
 
 
e02388e
efb6584
 
e02388e
efb6584
 
8c5e7d3
 
 
efb6584
ba79545
efb6584
 
 
 
e02388e
efb6584
e02388e
efb6584
 
8c5e7d3
 
 
efb6584
e02388e
efb6584
e02388e
efb6584
8c5e7d3
 
 
efb6584
ba79545
efb6584
 
 
 
 
e02388e
efb6584
 
 
 
8c5e7d3
 
 
efb6584
 
 
e02388e
efb6584
 
 
 
e02388e
efb6584
 
 
8c5e7d3
efb6584
 
e02388e
 
25e5e40
e02388e
 
 
 
 
 
 
efb6584
 
e02388e
efb6584
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import os
os.environ['HF_HOME'] = '/tmp'
import time
import streamlit as st
import pandas as pd
import io
import plotly.express as px
import zipfile
import string
from cryptography.fernet import Fernet
from streamlit_extras.stylable_container import stylable_container
from typing import Optional
from gliner import GLiNER
from comet_ml import Experiment

# --- Page Configuration and UI Elements ---
st.set_page_config(layout="wide", page_title="Named Entity Recognition App")
st.subheader("DataHarvest", divider="violet")
st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")
st.markdown(':rainbow[**Supported Languages: English**]')

expander = st.expander("**Important notes**")
expander.write("""**Named Entities:** This DataHarvest web app predicts nine (9) labels: "person", "country", "city", "organization", "date", "time", "cardinal", "money", "position"

Results are presented in easy-to-read tables, visualized in an interactive tree map, pie chart and bar chart, and are available for download along with a Glossary of tags.

**How to Use:** Type or paste your text into the text area below, then press Ctrl + Enter. Click the 'Results' button to extract and tag entities in your text data.

**Usage Limits:** You can request results unlimited times for one (1) month.

**Technical issues:** If your connection times out, please refresh the page or reopen the app's URL. 

For any errors or inquiries, please contact us at info@nlpblogs.com""")

with st.sidebar:
    st.write("Use the following code to embed the DataHarvest web app on your website. Feel free to adjust the width and height values to fit your page.")
    code = '''
    <iframe
	src="https://aiecosystem-dataharvest.hf.space"
	frameborder="0"
	width="850"
	height="450"
    ></iframe>
    '''
    st.code(code, language="html")
    st.text("")
    st.text("")
    
    st.subheader("πŸš€ Ready to build your own AI Web App?", divider="violet")
    st.link_button("AI Web App Builder", "https://nlpblogs.com/build-your-named-entity-recognition-app/", type="primary")

# --- Comet ML Setup ---
COMET_API_KEY = os.environ.get("COMET_API_KEY")
COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")
comet_initialized = bool(COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME)
if not comet_initialized:
    st.warning("Comet ML not initialized. Check environment variables.")
    print("Warning: Comet ML environment variables are not set. Logging will be disabled.")

# --- Label Definitions ---
labels = ["person", "country", "city", "organization", "date", "time", "cardinal", "money", "position"]
category_mapping = {
    "People": ["person", "organization", "position"],
    "Locations": ["country", "city"],
    "Time": ["date", "time"],
    "Numbers": ["money", "cardinal"]
}

# --- Model Loading ---
@st.cache_resource
def load_ner_model():
    """Loads the GLiNER model and caches it."""
    try:
        return GLiNER.from_pretrained("knowledgator/gliner-multitask-large-v0.5", nested_ner=True, num_gen_sequences=2, gen_constraints=labels)
    except Exception as e:
        st.error(f"Failed to load NER model. Please check your internet connection or model availability: {e}")
        st.stop()
model = load_ner_model()
reverse_category_mapping = {label: category for category, label_list in category_mapping.items() for label in label_list}

# --- Session State Initialization ---
if 'show_results' not in st.session_state:
    st.session_state.show_results = False
if 'last_text' not in st.session_state:
    st.session_state.last_text = ""
if 'results_df' not in st.session_state:
    st.session_state.results_df = pd.DataFrame()
if 'elapsed_time' not in st.session_state:
    st.session_state.elapsed_time = 0.0

# --- Text Input and Clear Button ---
word_limit = 200
text = st.text_area(f"Type or paste your text below (max {word_limit} words), and then press Ctrl + Enter", height=250, key='my_text_area')
word_count = len(text.split())
st.markdown(f"**Word count:** {word_count}/{word_limit}")

def clear_text():
    """Clears the text area and hides results."""
    st.session_state['my_text_area'] = ""
    st.session_state.show_results = False
    st.session_state.last_text = ""
    st.session_state.results_df = pd.DataFrame()
    st.session_state.elapsed_time = 0.0

st.button("Clear text", on_click=clear_text)

# --- Results Section ---
if st.button("Results"):
    if not text.strip():
        st.warning("Please enter some text to extract entities.")
        st.session_state.show_results = False
    elif word_count > word_limit:
        st.warning(f"Your text exceeds the {word_limit} word limit. Please shorten it to continue.")
        st.session_state.show_results = False
    else:
        # Check if the text is different from the last time
        if text != st.session_state.last_text:
            st.session_state.show_results = True
            st.session_state.last_text = text
            start_time = time.time()
            with st.spinner("Extracting entities...", show_time=True):
                # Pass the raw text directly to the model
                entities = model.predict_entities(text, labels)
                df = pd.DataFrame(entities)
                st.session_state.results_df = df
                if not df.empty:
                    df['category'] = df['label'].map(reverse_category_mapping)
                    if comet_initialized:
                        experiment = Experiment(api_key=COMET_API_KEY, workspace=COMET_WORKSPACE, project_name=COMET_PROJECT_NAME)
                        experiment.log_parameter("input_text", text)
                        experiment.log_table("predicted_entities", df)
                        experiment.end()
            end_time = time.time()
            st.session_state.elapsed_time = end_time - start_time
            # Place the message here, so it only runs once per button click
            st.info(f"Results processed in **{st.session_state.elapsed_time:.2f} seconds**.")
        # If the text is the same, do nothing but keep results displayed
        else:
            st.session_state.show_results = True

# Display results if the state variable is True
if st.session_state.show_results:
    df = st.session_state.results_df
    if not df.empty:
        df['category'] = df['label'].map(reverse_category_mapping)
        st.subheader("Grouped Entities by Category", divider="violet")
        
        category_names = sorted(list(category_mapping.keys()))
        category_tabs = st.tabs(category_names)
        
        for i, category_name in enumerate(category_names):
            with category_tabs[i]:
                df_category_filtered = df[df['category'] == category_name]
                if not df_category_filtered.empty:
                    st.dataframe(df_category_filtered.drop(columns=['category']), use_container_width=True)
                else:
                    st.info(f"No entities found for the '{category_name}' category.")
                
        with st.expander("See Glossary of tags"):
            st.write('''
            - **text**: ['entity extracted from your text data']
            - **score**: ['accuracy score; how accurately a tag has been assigned to a given entity']
            - **label**: ['label (tag) assigned to a given extracted entity']
            - **start**: ['index of the start of the corresponding entity']
            - **end**: ['index of the end of the corresponding entity']
            ''')
        
        st.divider()
        # Tree map
        st.subheader("Tree map", divider="violet")
        fig_treemap = px.treemap(df, path=[px.Constant("all"), 'category', 'label', 'text'], values='score', color='category')
        fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25))
        expander = st.expander("**Download**")
        expander.write("""You can easily download the tree map by hovering over it. Look for the download icon that appears in the top right corner.
        """)
        st.plotly_chart(fig_treemap)
        
        # Pie and Bar charts
        grouped_counts = df['category'].value_counts().reset_index()
        grouped_counts.columns = ['category', 'count']
        col1, col2 = st.columns(2)
        
        with col1:
            st.subheader("Pie chart", divider="violet")
            fig_pie = px.pie(grouped_counts, values='count', names='category', hover_data=['count'], labels={'count': 'count'}, title='Percentage of predicted categories')
            fig_pie.update_traces(textposition='inside', textinfo='percent+label')
            expander = st.expander("**Download**")
            expander.write("""You can easily download the pie chart by hovering over it. Look for the download icon that appears in the top right corner.
            """)
            st.plotly_chart(fig_pie)
            
        with col2:
            st.subheader("Bar chart", divider="violet")
            fig_bar = px.bar(grouped_counts, x="count", y="category", color="category", text_auto=True, title='Occurrences of predicted categories')
            expander = st.expander("**Download**")
            expander.write("""You can easily download the bar chart by hovering over it. Look for the download icon that appears in the top right corner.
            """)
            st.plotly_chart(fig_bar)
        
        # Most Frequent Entities
        st.subheader("Most Frequent Entities", divider="violet")
        word_counts = df['text'].value_counts().reset_index()
        word_counts.columns = ['Entity', 'Count']
        repeating_entities = word_counts[word_counts['Count'] > 1]
        
        if not repeating_entities.empty:
            st.dataframe(repeating_entities, use_container_width=True)
            fig_repeating_bar = px.bar(repeating_entities, x='Entity', y='Count', color='Entity')
            fig_repeating_bar.update_layout(xaxis={'categoryorder': 'total descending'})
            expander = st.expander("**Download**")
            expander.write("""You can easily download the bar chart by hovering over it. Look for the download icon that appears in the top right corner.
            """)
            st.plotly_chart(fig_repeating_bar)
        else:
            st.warning("No entities were found that occur more than once.")
        
        # Download Section
        st.divider()
        dfa = pd.DataFrame(data={'Column Name': ['text', 'label', 'score', 'start', 'end'],
                                'Description': ['entity extracted from your text data', 'label (tag) assigned to a given extracted entity', 'accuracy score; how accurately a tag has been assigned to a given entity', 'index of the start of the corresponding entity', 'index of the end of the corresponding entity']})
        
        buf = io.BytesIO()
        with zipfile.ZipFile(buf, "w") as myzip:
            myzip.writestr("Summary of the results.csv", df.to_csv(index=False))
            myzip.writestr("Most Frequent Entities.csv", repeating_entities.to_csv(index=False))
            myzip.writestr("Glossary of tags.csv", dfa.to_csv(index=False))
        
        with stylable_container(
            key="download_button",
            css_styles="""button { background-color: #8A2BE2; border: 1px solid black; padding: 5px; color: white; }""",
        ):
            st.download_button(
                label="Download results and glossary (zip)",
                data=buf.getvalue(),
                file_name="nlpblogs_results.zip",
                mime="application/zip"
            )
        st.text("")
        st.text("")
    else:
        st.warning("No entities were found in the provided text.")